Число и культура - А. Степанов
Шрифт:
Интервал:
Закладка:
Анализ целостных систем с заданными тринитарными отношениями, когда значим порядок размещения элементов, представляет, однако, самостоятельный интерес, пусть и далекий от непосредственного предмета первой главы, зато тесно примыкающий к теме третьей. Поэтому стоит все-таки решить уравнение (П.5) при n = 3. Подставив последнюю величину в уравнение, после надлежащих сокращений получим:
М = М (М – 1) (М – 2).
К вариантам М = 0, М = ∞ мы уже успели привыкнуть. Процесс поиска остальных корней заключается в решении оставшегося (после сокращения одинаковых сомножителей М в правой и левой частях) квадратного уравнения
М2 – 3М + 1 = 0.
Значение корней составляет
М = (3 ± √5) / 2.
( П.6 )
Число элементов выражается здесь хотя и вещественной, но иррациональной величиной. В рамках первой главы мы избегали работать с такими, т.к. трудно сообразить, что вообще это может означать: система состоит из иррационального количества элементов. Проще всего было бы поступить так и в настоящем случае, однако на сей раз попробуем вглядеться более пристально.
Знатокам элементарной математики вид решений (П.6) покажется очень знакомым. Поскольку мы привыкли иметь дело с десятичными представлениями, воспользуемся приближениями:
М1 2, 618
М2 0, 382
( П.7 )
Сумма двух корней составляет 3, а сами они находятся во взаимно обратном соотношении: М2 = 1 / М1 . Те, кто успели прочитать главу 3 (а настоящее Приложение полезнее читать после знакомства с ней), легко узнают эти величины – они являются характерными для задачи о золотом сечении.
Надеюсь, не приводит в смущение факт, что количество элементов в системе оказалось дробным, а не целым. Такие вещи с детства привычны: мы говорим, например, что перед нами два с половиной яблока, хотя "кусков", очевидно, три. Запомним этот промежуточный результат: если мы рассматриваем некую целостную и простую систему с заданными тринитарными отношениями и хотим при этом учитывать порядок размещения элементов, то в итоге приходим к значениям М, равным (П.6) или в десятичном приближении (П.7).
Данная констатация пока не о многом свидетельствует, хотя ситуация тринитарности отношений применительно к целостным системам, как мы помним, в культуре исключительно важна. Чтобы извлечь более интересную информацию, рассмотрим еще одну разновидность систем – целостных и простых, со значимым порядком размещения элементов, однако на сей раз уже не с тринитарными отношениями. Это может показаться неожиданным: в качестве кратности отношений выберем величину n = – 1.
Ранее мы избегали проникать в область отрицательных значений n. Причиной тому служили очевидные сложности с интерпретацией: что реальное может стоять за кратностью отношений, фиксирующей, как мы помним, характер логики систем, если эта кратность отрицательная? В первой главе мы так или иначе научились справляться с ситуацией М = – 1. Это решение сопровождало все нечетные n , в частности, n = 3 (система с тринитарными отношениями), а в семантическом плане оно коррелировало с наличием негативации. Например, размерность пустого множества равна минус единице, упоминалось об используемых в новейшей культуре сопряженных понятиях ничто (скажем, у экзистенциалистов), паники (французская философия последних десятилетий), о недвусмысленно просвечивающем аспекте самоотрицания, "самоуничтожения" в ряде политических констелляций ХХ в. (например, феномены большевизма, нацизма и проч.). Кроме того (зайдем теперь с другой стороны), речь шла о том, что в процессе последовательного развития культуры наблюдается тенденция по интериоризации действовавшего прежде количества элементов: былое М превращается в n, проникает на уровень логики, а для М подыскивается соответствующее новое значение.(1) Сходное превращение допустимо представить и здесь: значением минус единица будет описываться не количество элементов М, а кратность отношений n.
В каких случаях это может стать актуальным? – К примеру, если мы еще более кардинально, чем прежде, начнем мыслить упомянутую негативацию и, скажем, категорию ничто применим не к системе в целом, а к ее отношениям (инсталляция ничто в логику). Новых изобретений, собственно, и не требуется, достаточно вспомнить об одной из древневосточных традиций. На протяжении столетий в ареале буддизма практиковались упражнения не только на представление пустоты, но и еще более радикальная версия: так называемое пустотное мышление как метод, считавшееся в некоторых школах дзэна наиболее адекватным для постижения сущности бытия и сознания. В Новейшее время положения буддизма (в частности, дзэна) становятся достоянием мыслителей и на Западе, а начиная с 1960-х гг. оказываются одним из компонентов поп-культуры. Но прежде, чем идти дальше, стоит выяснить, что будет, если мы подставим величину n = – 1 в дескриптивное уравнение (П.5):
М = М! / (М + 1)!
После простых преобразований приходим к квадратному уравнению
М2 + М – 1 = 0.
Его решениями являются
М = ( – 1 ± √5 ) / 2,
( П.8 )
или в десятичном приближении
М1 – 1, 618
М2 0, 618.
( П.9 )
Искушенный в элементарной математике и/или в теории искусств читатель тут же опознает два приведенных решения – они из той же задачи о золотом сечении, как и в случае n = 3.
Если мы возьмем отрезок длиной в единицу и разделим его в гармоническом отношении (один из синонимов золотого сечения), то длина большей части составит 0, 618, а меньшей 0, 382. Если речь зайдет о так называемом внешнем делении того же отрезка, то длины соответствующих частей описываются значениями – 1, 618 и 2, 618 (авторы, популярно излагающие природу золотого сечения, обычно призывают читателей не смущаться знаком минус, стоящим перед первой величиной. Он отражает тот факт, что рассматривается внешнее деление, сама же длина отрезка, конечно, остается положительной).
Сумма двух корней (П.9) составляет минус единицу, они по-прежнему (как и при n = 3) находятся между собой во взаимно-обратном отношении: М2 = – 1 / М1. Одновременно обращаем внимание, что, если избрать в качестве точки отсчета золотое сечение, то корни (П.7) и (П.9) взаимно дополняют друг друга. 0, 382 и 0, 618 – из задачи о внутреннем делении; 2, 618 и – 1, 618 относятся к комплементарной задаче о делении внешнем.(2)
Если имеет какой-нибудь смысл изучать простые целостные системы, полагая, что в отношениях между их элементами существенную роль играет направление отношений (порядок размещения), то в случае тринитарности логики и в случае логики пустотной приходим к значениям М, совпадающим с числами из золотого сечения. При этом парадигма тринитарности и парадигма пустотности оказываются сопряженными: чтобы получить полное золотое, или гармоническое, деление (будь то внутреннее или внешнее), нужно взять по одному корню из тринитарной парадигмы и из пустотной.
Случай тринитарности издавна разрабатывался в Европе; более непривычный для нас, кажущийся менее позитивным взгляд со стороны пустотности – продукт Востока. В новейшие времена они имеют тенденцию объединиться, и тем интереснее, что они в сущности взаимодополнительны, по крайней мере если брать за точку отсчета гармоническое соотношение, золотое сечение. Вероятно, нет нужды пояснять, какое значение для культуры имеет последнее (кое-что приведено в главе 3, там же мы постарались показать, что эта пропорция играет выдающуюся роль не только в искусстве, но и в политике). Ни на Западе, ни на Востоке в рамках гуманитарных и социальных дисциплин не принято работать с числами полностью открыто и сознательно; в очередной раз напомним, речь идет хотя и о рациональных, но обыкновенно бессознательных содержаниях. Зато корпус элементарной математики, простейшей логики издавна значим во всех частях света, люди стремятся к правильному и строгому мышлению, какими бы конкретными вопросами ни занимались. Правильное мышление принято считать заодно и красивым; эстетическая мотивация, эстетические критерии играли одну из заглавных ролей во всех областях человеческих знаний. В Предисловии приводилась цитата из Пуанкаре, в которой подчеркивалась конструктивная функция эстетических моментов в науке, о критериях простоты и красоты в теориях не раз напоминал Эйнштейн. То же стремление, характерное и для философов Древней Греции, и для самых продвинутых современных ученых, в полной мере присуще и мыслителям Востока (возможно, в этом они дадут нам еще сто очков вперед).
Независимо друг от друга, на почве совершенно различных цивилизаций в Европе и на Востоке разрабатывались, на первый взгляд, кардинально разные интеллектуальные подходы (в частности, тринитарный и пустотный), но, опираясь, в сущности, на один и тот же фундамент строгого, последовательно правильного мышления, развивая интенцию красоты, они пришли к результатам, если не непосредственно схожим, то несомненно сопряженным: так сказать, к утверждению имплицитного золотого сечения с двух разных сторон. Именно это и имелось в виду, когда в Предисловии упоминалась одна из разновидностей коллективного рационального бессознательного – межцивилизационная. В каждой цивилизации разрабатывалась своя парадигма; чисто внешне, они ставили, казалось бы, принципиально разные задачи, использовали несхожие категории, и все же полученные результаты ассоциируются поверх географических и хронологических границ. Не оттого ли, что у нас в конечном счете одна и та же элементарная математика, одни и те же врожденные привычки мышления? Теперь, в условиях вавилонского смешения культур, когда Запад все больше узнает о Востоке, а Восток – о Западе, появилась материальная возможность обнаруживать зоны их корреляции, а аппарат элементарной математики издавна и заранее готов.