Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Энрике Грасиан
Шрифт:
Интервал:
Закладка:
Следовательно, простые числа являются первичными элементами, из которых построены все числа. Слово «простой» (prime) происходит от латинского слова primus, означающего «первый» и включающего в себя оригинальное значение «первичный», или «примитивный», так как все числа могут быть порождены простыми числами. Так же как атомы образуют молекулы, простые числа образуют составные числа. Все известные химические элементы состоят из атомов, которые сочетаются друг с другом определенным образом. Русский химик Дмитрий Иванович Менделеев (1834–1907) создал периодическую систему элементов, расположив все химические элементы по группам. Однако не существует аналогичной таблицы для простых чисел, в которой они были бы сгруппированы в соответствии с неким правилом, не существует закона, который генерирует все простые числа без исключений. Простые числа появляются хаотическим образом и распределяются в ряду натуральных чисел без всякой видимой закономерности.
Простые числа: изобретение или открытие?С появлением систем счисления одной из первых естественных задач была проверка того, является ли число четным или нечетным. Следующим шагом было разложение чисел на множители, что определило признаки деления, которые изучаются в начальной школе. Таким образом, в любой системе счета есть наборы чисел, определяемые своими свойствами, которые легко проверить. Но это не относится к простым числам. Единственное, что точно о них известно, это то, что они не могут быть четными (за исключением самого первого простого числа — 2), иначе они бы делились на два. Но и нельзя их рассматривать как что-то редко встречающееся, так как еще Евклид доказал, что множество простых чисел бесконечно. Позже мы рассмотрим элегантный способ доказательства этой идеи. Также нельзя недооценивать важность простых чисел, поскольку основная теорема арифметики определила им в математике главную роль. Поэтому, как уже говорилось, простые числа по праву стали предметом пристального изучения.
Когда мы говорим о предмете научного исследования, логично предположить, что он существует. Мы его уже обнаружили или еще нет, впоследствии мы можем его изучать или проигнорировать, но в любом случае он существует независимо от того, что мы о нем думаем. Так в определенный исторический момент бактерии стали для биологов объектом изучения. Никто не сомневается в том, что бактерии уже присутствовали в природе в качестве живых организмов задолго до появления биологов, на самом деле даже до появления вида человека. Никто из ученых не сомневается в этом. Однако в математике вопрос приобретает иную окраску. Являются ли простые числа открытием или изобретением человеческого ума? Существовали бы простые числа, если бы не было человека? Этот вопрос вызывал и продолжает вызывать много споров, что очень интересно для одних и неважно для других. Скорее всего, это один из вопросов, не имеющих ответа, и мы можем лишь высказывать свои мнения.
Но в отношении математических исследований есть действительно интересный момент: математики ведут себя как первопроходцы, вступающие в странный незнакомый мир, как будто математика на самом деле отделена от нашего мира. Это чувство неизведанного является самой сутью математических исследований и придает им поэтическую привлекательность. Немецкий физик Генрих Рудольф Герц (1857–1894) говорил: «Разве можно не испытывать такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом? Кажется, что эти формулы умнее нас, умнее даже самого автора, что они дают нам больше, чем мы в них изначально заложили».
Философская, или, лучше сказать, эпистемологическая школа, которая считает, что идеи (в том числе математические истины) существуют независимо от нас, известна как платонизм. Это учение утверждает, что конкретные воплощения существуют до тех пор, пока находятся в присутствии абстрактной идеи.
История математики, похоже, подтверждает эту теорию неоспоримым фактом универсальности математики: различные цивилизации в разные периоды истории и в разных концах света, как правило, приходят к одним и тем же заключениям и истинам. В случае простых чисел существует интересный артефакт, который можно назвать археологическим экспонатом математики: кость Ишанго.
Существуют ли простые числа сами по себе, вне человеческого разума? Этот вопрос занимал немецкого физика Генриха Рудольфа Герца.
* * *
КОСТЬ ИШАНГО
Кость Ишанго, возможно, берцовая кость бабуина, с первого взгляда выглядит как некий инструмент. Она имеет рукоятку, за которую ее удобно держать, и заостренный кристалл кварца на конце. Она была найдена у истоков Нила, на границе между Угандой и Демократической Республикой Конго, и принадлежала первобытному племени, погребенному извержением вулкана. Этому инструменту около 20000 лет.
Кость Ишанго выставлена в бельгийском музее естественных наук в Брюсселе.
* * *
На кости имеются насечки в виде коротких прямых линий. Их детальное изучение привело к гипотезе, что эта кость не инструмент, а численная система для помощи в счете. В таком случае вполне вероятно, что кварцевый наконечник использовался для написания неких цифр. Другими словами, эта кость являлась примитивным калькулятором. Расположение насечек по столбцам предполагает операции сложения и умножения в системе счисления с основанием 12. Все числа справа — нечетные, но самое удивительное, что все числа слева являются простыми из промежутка от 10 до 20. Маловероятно, что эти знаки нанесены случайно, скорее всего, они указывают на существование некоторого серьезного метода вычислений.
Кость Ишанго в виде диаграммы, показывающей распределение насечек по трем столбцам. Кость, вероятно, использовалась для выполнения математических расчетов.
Напомним, что понятие простого числа требует абстрактного мышления, выходящего за рамки простого счета.
Вопрос о существовании математических истин независимо от человека имеет третий компромиссный ответ, который допускает возможность того, что действительно существуют математические идеи, которые могут быть открыты, но они являются «психическими понятиями», предопределенными нашим генетическим наследием. Если это так, некоторые примитивные формы этих понятий должны существовать в природе. Например, существует несколько видов животных, которые совершенно точно могут считать. Одиночные осы могут подсчитывать количество живых гусениц, которых они оставляют рядом со своими яйцами в качестве пищи для вылупившихся личинок: это всегда в точности 5, 12 или 24. У ос рода Eumenes мы встречаем еще более удивительные примеры. Оса знает, какая особь вылупится из отложенного яйца: мужская или женская. Неясно, как ей удается установить пол будущего потомства, так как норки, в которых она откладывает яйца, совершенно одинаковы. Но самое удивительное, что оса оставляет пять гусениц рядом с яйцом мужской особи и десять — рядом с яйцом женской особи. Причина такого различия в том, что женские особи вырастают до гораздо больших размеров, чем мужские.
Для иллюстрации существования в природе более сложных понятий, таких как простые числа, можно привести любопытный пример некоторых видов так называемых периодических цикад, а именно Magicicada septendecim и Magicicada tredecim.
Названия видов septendecim и tredecim означают соответственно 17- и 13-летний жизненные циклы насекомых. Оба числа являются простыми, и зоологи разработали различные теории для объяснения выбора простого числа для жизненного цикла этих насекомых.
Возьмем, к примеру, вид Magicicada septendecim. Личинка цикады живет под землей и питается соками корней деревьев. Она проводит 17 лет в таком состоянии, а затем выходит на поверхность, чтобы превратиться во взрослое насекомое. Эта стадия длится всего несколько дней, во время которых цикада размножается и после этого умирает. Теория, объясняющая такой жизненный цикл цикады, выглядит следующим образом: взрослое насекомое защищается от паразита с жизненным циклом два года.
Если бы жизненный цикл цикады был кратен 2, оба вида встречались бы каждые 2, 4, 8 лет и так далее. Однако если жизненный цикл цикады является достаточно большим простым числом, например, 17, паразит и цикада могут встретиться раз в 34 года, так как 34 — первое число, кратное 17 и 2. Если бы, к примеру, жизненный цикл паразита составлял 16 лет, они бы могли встретиться раз в 16 х 17 = 272 года.
Вполне вероятно, что со временем при исследовании поведения животных найдутся еще примеры видов, которые обладают умением считать. Нас не должна смущать простота приведенных примеров, ибо факт остается фактом: несмотря на то что математические понятия, такие как простые числа, являются творением человека, исследователи в разных областях науки могут привести примеры существования этих понятий в природе независимо от нас.