Введение в теорию риска (динамических систем) - Владимир Живетин
Шрифт:
Интервал:
Закладка:
При этом теория риска динамических систем посвящена подтверждению возможности или невозможности реализации и формирования динамическими системами таких процессов, когда достигается поставленная цель.
Теория риска включает в себя разработку:
1) теоретических основ расчета области допустимых Ωдоп и критических Ωкр состояний с использованием:
– теории устойчивости;
– теории катастроф;
– численных методов и т. п. согласно структурно-функциональным свойствам динамической системы;
2) математических моделей объектов контроля и управления;
3) теоретических основ математических моделей погрешностей систем управления;
4) теоретических основ построения математических моделей погрешностей систем контроля;
5) теоретических основ анализа и синтеза систем контроля и управления;
6) математических основ построения численных показателей риска в пространстве случайных величин, процессов и полей;
7) метода расчета допустимых значений показателей риска и их корректировки путем изменения области допустимых состояний;
8) оценки возвратных и невозвратных критических состояний;
9) методов и средств полунатурального и натурального моделирования.
В общем случае теория риска с указанных позиций изучает объекты биосферы, этносферы, социосферы, техносферы, эгосферы в их взаимосвязи, взаимовлиянии. При изучении эгосферы имеют место проблемы взаимодействия потерь и рисков, возникающих на уровнях мегамира, макромира, микромира и тонкого мира. Это позволяет рассматривать проблемы риска человека как элемента биосферы и социосферы.
Построение показателей риска и безопасности управляемых динамических систем включает разработку:
1) математических моделей областей опасных и безопасных состояний динамической системы, т. е. Ω,кр и Ωдоп соответственно;
2) модели изменения выходных параметров x(t) под воздействием внешних W(t) и внутренних V(t) возмущающих факторов риска, т. е. R = (W, V);
3) модели вероятностных характеристик векторного процесса x(t), т. е. плотностей вероятностей W(x, t), как в текущий момент времени, так и в упрежденный;
4) модели процесса x(t) при переходе из Ωдоп в Ωкр и наоборот:
– процедуры расчета допустимого времени пребывания динамической системы в области Ωкр;
– разработка средств и методов вывода из области Ωкр.
Выход в Ωкр при различных факторах риска R порождают различные фазовые траектории, которым соответствуют различные допустимые временные интервалы τ0 выхода из Ωкр и различные характеристики движения х(t).
Глава II. Классические динамические системы. Опасные и безопасные состояния
В данной главе рассматриваются фрагменты теоретических основ построения областей опасных и безопасных состояний, необходимых для расчета вероятностей риска и безопасности Р = (Р1, Р2, Р3, Р4) классических динамических систем, наделенных информационно-энергетическим потенциалом. Функциональные свойства подсистем структуры таких систем неизменны во времени и пространстве так же, как и целевые возможности системы в целом.
2.1. Классификация динамических систем. Вводные понятия
В качестве примеров, поясняющих суть дальнейших рассуждений, рассмотрим следующие системы.
1. Интеллектуальная система эгосферы управляет интеллектуальным потенциалом, ее деятельность направлена на изменение внутренних функциональных свойств подсистем единой системы – эгосферы.
2. Человек как динамическая система создает внутренние и внешние процессы в виде интеллектуальных и материальных объектов.
Введем следующие динамические системы на качественном уровне, положим в основу классификации такие рассмотренные в первой главе понятия, как функциональные свойства, структура, структурно-функциональные свойства.
Функциональные динамические системы – это такие системы, деятельность которых направлена на самосовершенствование – эволюционное развитие своего внутреннего потенциала [42].
Структурные или классические динамические системы наделены неизменными целевыми функциями при неизменных функциональных свойствах подсистем структуры, реализующих заданные цели [36].
Структурно-функциональные или суперклассические динамические системы реализуют комплексную деятельность, в процессе которой реализуется функциональное саморазвитие подсистем структуры, а также развитие динамических систем иерархии.
Введенные динамические системы, обладая различными потенциалами, реализуют различные уровни целедостижения.
Функциональные динамические системы, например эгосфера [26], осуществляют саморазвитие посредством энергетического потенциала, создаваемого системой, преобразуя энергию внешней среды.
Структурные динамические системы в процессе функционирования реализуют информационно-энергетический потенциал, заложенный в них согласно программам, неизменным во времени.
Структурно-функциональные динамические системы осуществляют свое целевое назначение путем саморазвития и реализации интеллектуально-энергетического потенциала согласно программам, заложенным в них при создании.
С учетом сказанного, структурные системы будем называть информационно-энергетическими, а структурно-функциональные – интеллектуально-энергетическими. Первые будем относить к классическим динамическим системам, вторые – к суперклассическим, учитывая, что последние создают первые.
Классические динамические системы [36].
В процессе эволюции теоретико-математических знаний о динамических системах введены несколько классов динамических систем, включающих:
«Классические динамические системы», исследованные Немыцким и Степановым (публикация 1949 г.).
Классические динамические системы включают:
«Динамические полусистемы», исследованные Бушау (1963 г.), Халкиным (1964 г.), в которых обобщено классическое определение динамических систем путем введения (рассмотрения) различных входных воздействий или внешних факторов W.
«Динамические системы и автоматы» в единстве, принадлежащие одному классу объектов, когда определение системы или машины включает входные воздействия и выходные величины. Создатели этого направления теоретических знаний: Задэ, Дезоер (1963 г.); Арбиб (1965); Вейес, Калман (1965 г.); Уаймор (1967 г.); Уиндекнехт (1967 г.).
Отметим особенности структурных динамических систем, у которых функциональные свойства неизменны.
Теория структурных динамических систем, которым посвящена работа [36], создана для динамических систем, в общем случае обладающих функциональными свойствами, которые либо неизменны во времени и пространстве, либо изменяются под воздействием внешних факторов W, в общем случае случайных. При этом структурные свойства системы исследуются в работе [36], где сказано: «Заметим, что одного знания текущего значения входного воздействия u(t) может оказаться недостаточным для предсказания выходной величины y(t). Предыдущие входные воздействия, подававшиеся на систему, могли изменить структуру Σ (например, из-за накопления энергии в первом приведенном примере или из-за срабатывания некоторого внутреннего переключателя во втором) настолько, что это приведет к изменению выходной величины. Другими словами, в общем случае значение выходной величины системы Σ зависит как от текущего значения входного воздействия, так и от предыстории этого воздействия. Лучше всего было бы не делать специальных различий между текущим и предшествующим входным воздействием системы. Поэтому мы будем говорить, что текущее значение выходной величины системы Σ зависит от состояния системы Σ, и определим чисто интуитивно текущее состояние системы Σ как такую часть настоящего и прошлого системы Σ, которая необходима для определения настоящих и будущих значений выходной величины. Другими словами, мы рассматриваем состояние системы Σ как некоторую (внутреннюю) характеристику системы Σ, значение которой в настоящий момент времени определяет текущее значение выходной величины и оказывает влияние на ее будущее. И если рассуждать совсем упрощенно, то состояние можно рассматривать как своего рода хранилище информации, или запоминающее устройство, или накопитель прецедентов. При этом нам нужно, конечно, потребовать, чтобы множество внутренних состояний системы Σ было достаточно богатым для того, чтобы вместить всю информацию о предыстории системы Σ, необходимой для предсказания влияния прошлого на будущее. Однако мы не станем требовать, чтобы состояние содержало лишь минимум такой информации, хотя, конечно, подобное требование является удобным упрощающим предположением».