Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Хаос. Создание новой науки - Джеймс Глейк

Хаос. Создание новой науки - Джеймс Глейк

Читать онлайн Хаос. Создание новой науки - Джеймс Глейк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 75
Перейти на страницу:

Открытие Лоренца было случайным, звено в цепи неожиданных прозрений, восходящей еще к Архимеду с его ванной. Но Лоренц не принадлежал к числу тех, кто торопится кричать «Эврика!». Руководимый инстинктивной прозорливостью, он приготовился идти дальше тем же путем и изучать последствия своего открытия, выясняя его роль в образовании потоков во всех видах жидкости.

Споткнись Лоренц на эффекте бабочки, этом символе торжества случая над предопределенностью, в его распоряжении не оказалось бы ничего, кроме плохих новостей. Но Лоренц в своей модели погоды видел нечто большее, чем просто встроенную в нее хаотичность, — там наблюдалась изящная геометрическая структура, некий порядок, выдающий себя за случайность. Лоренц, будучи математиком по призванию и метеорологом по профессии, начал в конце концов вести двойную жизнь. Кроме работ по метеорологии из-под его пера выходили статьи, где несколько вступительных строк о теории атмосферных процессов растворялись в математическом тексте.

Он уделял все больше и больше внимания математике систем, которые никогда не находились в устойчивом состоянии, почти повторяя друг друга, но не достигая полной идентичности. Известно, что погода как раз и является такой апериодичной системой. Мир полон подобных систем, и не нужно далеко ходить за примерами: численность популяций животных растет и падает почти регулярно, эпидемии начинаются и продолжаются, вопреки людским надеждам, тоже в определенном порядке. И если бы погода когда-нибудь повторилась в точности, продемонстрировав полностью идентичное прежнему облако или дождь, как две капли воды похожий на недавно прошедший, тогда, вероятно, она стала бы всегда воспроизводиться и проблема прогнозирования потеряла бы свою актуальность.

Лоренц предвидел, что должна существовать связь между неповторяемостью атмосферных явлений и неспособностью метеорологов предсказать их, иными словами, связь между апериодичностью и непредсказуемостью. Найти простые выражения для апериодичности было делом нелегким, однако Лоренц, преодолев множество мелких препятствий, в частности зацикливание программы, все же достиг успеха. Это произошло, когда он ввел в машину уравнение, описывающее количество солнечной энергии, которая изливается на земную поверхность при движении светила с востока на запад. После этого данные на выходе пришли в соответствие с изменениями, наблюдаемыми в реальности, когда солнце нагревает, например, восточное побережье Северной Америки и Атлантический океан. В результате цикличность программы исчезла.

Эффект бабочки был не случайностью, но необходимостью. Допустим, небольшие пертурбации так и останутся небольшими, не перемещаясь в системе, рассуждал ученый. Приближаясь к ранее пройденному состоянию, погода уподобится и последующим состояниям. Циклы станут предсказуемыми и в конце концов потеряют все свое очарование. Чтобы воспроизвести богатый спектр реальной погоды земного шара, ее чудесное многообразие, вряд ли можно желать чего-либо лучшего, чем эффект бабочки. Как уже говорилось, данный феномен имеет и строгое научное название — «сильная зависимость от начальных условий». Зависимость эту превосходно иллюстрирует детский стишок:

Не было гвоздя — подкова пропала,Не было подковы — лошадь захромала,Лошадь захромала — командир убит,Конница разбита, армия бежит,Враг вступает в город, пленных не щадя,Оттого что в кузнице не было гвоздя[1].

Как наука, так и жизнь учит, что цепь событий может иметь критическую точку, в которой небольшие изменения приобретают особую значимость. Суть хаоса в том, что такие точки находятся везде, распространяются повсюду. В системах, подобных погоде, сильная зависимость от начальных условий представляет собой неизбежное следствие пересечения малого с великим.

Коллеги Лоренца были изумлены тем, что он соединил в своей миниатюрной модели погоды апериодичность и сильную зависимость от начальных условий, что подтверждали его двенадцать уравнений, просчитанных с поразительной трудоспособностью не один десяток раз. Как может подобное многообразие, такая непредсказуемость — в чистом виде хаос! — возникнуть из простой детерминистской системы?

Лоренц, отложив на время занятия погодой, стал искать более простые способы воспроизведения сложного поведения объектов. Один из них был найден в виде системы из трех нелинейных, т. е. выражающих не прямую пропорциональную зависимость, уравнений. Линейные соотношения изображаются прямой линией на графике, и они достаточно просты. Линейные уравнения всегда разрешимы, что делает их подходящими для учебников. Линейные системы обладают неоспоримым достоинством: можно рассматривать отдельные уравнения как порознь, так и вместе.

Нелинейные системы в общем виде не могут быть решены. Рассматривая жидкостные и механические системы, специалисты обычно стараются исключить нелинейные элементы, к примеру трение. Если пренебречь им, можно получить простую линейную зависимость между ускорением хоккейной шайбы и силой, придающей ей это ускорение. Приняв в расчет трение, мы усложним формулу, поскольку сила будет меняться в зависимости от скорости движения шайбы. Из-за этой сложной изменчивости рассчитать нелинейность весьма непросто. Вместе с тем она порождает многообразные виды поведения объектов, не наблюдаемые в линейных системах.

В динамике жидкостей все сводится к нелинейному дифференциальному уравнению Навье-Стокса, удивительно емкому и определяющему связь между скоростью, давлением, плотностью и вязкостью жидкости. Природу этих связей зачастую невозможно уловить, ибо исследовать поведение нелинейного уравнения все равно что блуждать по лабиринту, стены которого перестраиваются с каждым вашим шагом. Как сказал фон Нейман, «характер уравнения… меняется одновременно во всех релевантных отношениях; меняется как порядок, так и степень. Отсюда могут проистекать большие математические сложности». Другими словами, мир был бы совсем иным и хаос не казался бы столь необходимым, если бы в уравнении Навье-Стокса не таился демон нелинейности.

Особый вид движения жидкости породил три уравнения Лоренца, которые описывают течение газа или жидкости, известное как конвекция. В атмосфере конвекция как бы перемешивает воздух, нагретый при соприкосновении с теплой почвой. Можно заметить, как мерцающие конвекционные волны поднимаются, подобно привидениям, над раскаленным асфальтом или другими поверхностями, излучающими теплоту. Лоренц испытывал искреннюю радость, рассказывая о конвекции горячего кофе в чашке. По его утверждению, это один из бесчисленных гидродинамических процессов в нашей Вселенной, поведение которых нам, вероятно, захочется предугадать. Как, например, вычислить, насколько быстро остывает чашка кофе? Если напиток не слишком горячий, теплота рассеется без всякого гидродинамического движения, и жидкость перейдет в стабильное состояние. Однако если кофе горячий, конвекция повлечет перемещение жидкости с большей температурой со дна чашки на поверхность, где температура ниже. Этот процесс наблюдается особенно отчетливо, если в чашку с кофе капнуть немного сливок — тогда видишь, сколь сложно кружение жидкости. Впрочем, будущее состояние подобной системы очевидно: движение неизбежно прекратится, поскольку теплота рассеется, а перемещение частиц жидкости будет замедлено трением. Как поясняет Лоренц, «у нас могут быть трудности с определением температуры кофе через минуту, но предсказать ее значение через час нам уже гораздо легче». Формулы движения, определяющие изменение температуры кофе в чашке, должны отражать будущее состояние этой гидродинамической системы. Они должны учитывать эффект рассеивания, при котором температура жидкости стремится к комнатной, а ее скорость — к нулю.

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц как бы разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, на взгляд физика, приобрели довольно простой вид. Взглянув на них — а это делал не один ученый на протяжении многих лет, — можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Рассмотрим простейший пример конвекции. Для этого представим некоторый замкнутый объем жидкости в сосуде с ровным дном, который можно нагревать, и с гладкой поверхностью, подвергающейся в ходе опыта охлаждению. Разница температур между горячим дном и прохладной поверхностью порождает токи жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря тепловой проводимости, как в металлическом бруске, не преодолевая естественное стремление жидкости находиться в покое. К тому же такая система является устойчивой: случайные движения, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно замирают, и жидкость возвращается в состояние покоя.

1 2 3 4 5 6 7 8 9 10 ... 75
Перейти на страницу:
На этой странице вы можете бесплатно скачать Хаос. Создание новой науки - Джеймс Глейк торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит