Хаос. Создание новой науки - Джеймс Глейк
Шрифт:
Интервал:
Закладка:
Галилей настолько подпал под власть своих умопостроений, что увидел упорядоченность, которой не было. По его убеждению, маятник определенной длины не только показывает точное время, но и обнаруживает независимость периода колебаний от угла отклонения. Проще говоря, маятник с большим углом колебаний проходит больший путь, но совершает его быстрее. Другими словами, период колебаний маятника не зависит от его амплитуды. «Если два человека начнут считать число колебаний, и один будет считать те, что имеют широкий угол, а второй — колебания с небольшим углом, обнаружится, что после десятков, даже сотен движений маятников их данные будут полностью совпадать, не различаясь и на доли единицы». Галилей вывел это утверждение эмпирическим путем. Однако, будучи подкреплено теорией, оно приобрело такую убедительность, что до сих пор входит прописной истиной в большинство курсов физики высших школ. Тем не менее данный постулат неверен: упорядоченность, замеченная Галилеем, лишь приблизительна, так как изменяющийся угол движения отвеса привносит в уравнения едва заметный элемент нелинейности. При малых амплитудах погрешность почти не проявляется, зато в опыте, подобном тому, что описан Галилеем, она налицо и даже поддается измерению.
Хотя небольшими эффектами нелинейности можно пренебречь, экспериментаторы быстро осознали, что живут в несовершенном мире. Со времен Галилея и Ньютона поиски упорядоченности в опытах отличались особой основательностью. Любой экспериментатор ищет неизменных величин, но это значит пренебрегать той крошечной долей беспорядочного, что вмешивается в четкую картину результатов. Если химик из одного эксперимента выводит, что постоянное соотношение двух веществ составляет 2,001, из другого — 2,003, а из третьего уже 1,998, весьма неосмотрительным с его стороны будет не подыскать теорию, объясняющую, что истинное соотношение равно два к одному.
Стремясь получить корректные результаты, Галилей также не придавал значения известным ему нелинейным эффектам — трению и сопротивлению воздуха. Последнее является весьма досадным осложнением, той палкой в колесе экспериментатора, которую необходимо убрать, чтобы постичь сущность новой механики. Падает ли птичье перышко так же быстро, как камень? Как показывает опыт, скорость падения их различна. Легенда о том, как Галилео Галилей бросал шары с вершины Пизанской башни, — это история об интуитивном постижении некоего идеального мира, где упорядоченность можно отделить от погрешностей опыта.
Отделив действие силы тяжести на тело определенной массы от действия сопротивления воздуха — что было блестящим достижением научной мысли, — Галилей вплотную приблизился к сути инерции и измерению количества движения. Все же в реальном мире маятники ведут себя как описано в парадигме Аристотеля: они останавливаются.
Закладывая основу грядущей смены парадигм, ученые бились над тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине. Зато утверждение, что эти системы большей частью представляют собой исключения из правил, отнюдь не являлось правдой. Поведение целого класса движущихся объектов: маятников, колеблющихся пружин, струн и гибких стержней — описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат, но почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание — и обнаружится: в динамических системах затаился хаос.
Физик не способен до конца проникнуть в тайны турбулентности, не поняв феномена маятника. До конца осмыслить эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и сверхпроводники Джозефсона. Ход некоторых химических реакций подобен поведению маятника. Нечто похожее прослеживается и в биении сердца. По словам одного ученого, динамика маятника таит в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции».
Рассмотрим качели на детской площадке. Они набирают ускорение, устремляясь вниз, а по мере взлета вверх их скорость падает; часть энергии постоянно утрачивается из-за трения. Допустим, что качели приводит в движение некий механизм, подобный часовой пружине. Как подсказывает нам интуиция, в какой бы точке ни началось движение, оно станет постоянным. Качели будут раскачиваться взад и вперед, поднимаясь каждый раз на одну и ту же высоту. Такое возможно. Однако, сколь ни удивительно, качели могут колебаться и весьма странным образом: сначала взлетать высоко, затем низко, никогда не повторяя тот рисунок движения, что наблюдался прежде.
Поразительно неустойчивое поведение порождается нелинейностью потока энергии на входе и выходе этого простейшего осциллятора. Амплитуда колебаний уменьшается, затем увеличивается. Уменьшается — потому что трение стремится остановить движение, увеличивается — из-за постоянно возникающих внешних толчков. Но даже тогда, когда замедляющаяся, а затем ускоряющаяся система, казалось бы, находится в равновесии, это лишь видимость. Мир полон таких систем, начиная с атмосферной, которую «заглушает» трение перемещающихся воздушных масс, воды, рассеивание тепла в открытый космос и «приводит в движение» постоянный приток солнечной энергии.
Впрочем, непредсказуемость поведения маятников не была причиной, подвигшей физиков и математиков снова всерьез взяться за их изучение в 60-70-х годах. Непредсказуемость лишь подогрела интерес к проблеме. Исследователи динамики хаоса обнаружили, что неупорядоченное поведение простых систем является процессом созидания некой сложности. Перед взором исследователей представали причудливые объекты, устойчивые и не совсем, имеющие пределы и безграничные, но всегда обладавшие очарованием жизни. Именно поэтому ученые, словно дети, играли в эти игрушки.
Играли не только они одни. На прилавках сувенирных магазинов появилась забавная безделица, получившая название «космические шары» или «небесная трапеция». Она представляет собой два шарика, закрепленных на противоположных концах стержня, который, в свою очередь, подобно поперечине буквы Т, крепится на свободном конце маятника. Центром тяжести маятника служит третий шар, более массивный, чем первые два. Качание маятника сопровождается свободным вращением верхнего стержня. Внутри у всех трех шариков находятся маленькие магниты. Однажды запустив устройство, вы наблюдаете, как оно работает. В его основание встроен электромагнит с автономным питанием, и всякий раз, как нижний шарик приближается к основанию, игрушка получает легкий магнитный толчок. Временами устройство качается устойчиво и ритмично, но порой его бесконечно изменчивое движение напоминает хаос.
Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, качается в любом направлении, не ограничиваясь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинами А и В, потом движение перейдет на сторону ВС, и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгивает к вершине А. Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов — там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса на практике предсказать невозможно.
Ученые, занимающиеся динамикой, полагают, что описать поведение системы с помощью уравнений значит понять ее. Что может лучше уравнений передать существенные черты системы? Уравнения, передающие движение качелей или рассмотренных выше игрушек, устанавливают связь между углом колебаний маятника, скоростью, преодолеваемым трением и движущей силой. Однако добросовестный исследователь обнаруживает, что он не в состоянии ответить на простейшие вопросы о будущих состояниях системы в силу того, что в уравнениях присутствует крошечная доля нелинейности. С помощью компьютера можно смоделировать эти состояния, бегло просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах.