Научная революция XVII века - Владимир Кирсанов
Шрифт:
Интервал:
Закладка:
На самом деле законченная Галилеем книга, которую он продолжал править и дополнять, отнюдь не была «совершенно новой» — в ней излагались результаты прошлых его исследований, в основном относящиеся к падуанскому периоду, причем спектр там был очень широк — от статики и сопротивления материалов до законов движения маятника и законов падения. Галилей не пришел даже к окончательному решению, как назвать книгу, и она вышла в 1638 г. в Лейдене у Эльзевиров под тем заглавием, которое ей дал Луи Эльзевир. Галилею оно не нравилось, и он даже хотел его изменить, хотя до этого дело так и не дошло. На титульном листе последней книги Галилея стояло:
БЕСЕДЫ и МАТЕМАТИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА, касающиеся двух новых отраслей науки, относящихся к механике и местному движению, синьора Галилео Галилея Линчео, философа и первого математика светлейшего великого герцога Тосканского с приложением о центрах тяжести различных телСтроение книги во многом напоминает «Диалог» — она написана в форме свободной дискуссии между знакомыми нам персонажами — Сальвиати, Сагредо и Симпличио, но имеется и различие: Третий и Четвертый день «Бесед» представляют собой обсуждение старого трактата Галилея «О местном движении», написанного по-латыни, отрывки из которого читает вслух Сальвиати, и лишь обсуждение их ведется по-итальянски. Уже самим этим приемом Галилей хотел, по-видимому, подчеркнуть академический характер «Бесед», в отличие от «Диалога» его новая книга в гораздо большей степени адресовалась научному сообществу, чем широкой публике. И если он, поступая таким образом, имел в виду избежать нареканий со стороны духовенства, ему это полностью удалось. Как заметил по этому поводу С. Тимпанаро в предисловии ко второму тому собрания сочинений Галилея: «„Беседы” — книга не менее коперниканская, чем „Диалог". Теологи не осудили ее, потому что они ее не поняли» [23, II, с. 97].
Титульный лист «Бесед»Две новые науки, обозначенные в заглавии, — это сопротивление материалов, которому посвящены в основном первые два дня (напомним, что главы называются у Галилея днями), и кинематика равноускоренного движения, которая является темой Третьего и Четвертого дней. Уже после смерти Галилея в книгу были включены еще две главы. Пятый день был опубликован в 1674 г. в книге ученика Галилея Винченцо Вивиани «Пятая книга „Начал" Евклида, или же Общее учение о пропорциях, рассматриваемое согласно Галилею и изложенное новым образом и впервые опубликованное Винченцо Вивиани, последним учеником Галилея, с приложениями, принадлежащими Галилею и Торричелли». Последняя глава, в которой обсуждается проблема удара, появилась как Шестой день в 1718 г. при переиздании сочинений Галилея во Флоренции. Существуют, однако, основания полагать, что сам Галилей намеревался вставить ее перед Пятым днем, что подтверждается также некоторыми сюжетными особенностями Четвертого, Пятого и Шестого дней.
Тема Первого дня значительно шире предмета, обозначенного в тексте книги, а именно «науки, касающейся сопротивления твердых тел разрушению». Главный вопрос — почему тела сопротивляются разрушению при растяжении и изгибе — не находит в этой главе определенного ответа, но зато он является поводом для обсуждения многих так или иначе примыкающих к нему проблем. Например, вопрос о сопротивлении предполагает рассмотрение причин связности тел, а они, в свою очередь,— анализ строения материи. Атомистические представления, положенные в основу такого анализа, заставляют Галилея перейти к проблеме дискретного и непрерывного и обсуждению структуры бесконечности. Здесь, в частности, им высказывается замечательная мысль, что мощность множества натуральных чисел равна мощности множества квадратов натуральных чисел — результат поразительный, если учесть, что теория множеств была создана лишь в XIX в. Георгом Кантором. Обсуждая строение материи, Галилей не может не коснуться проблемы пустоты и среды — здесь он опровергает взгляды Аристотеля относительно падения тел в пустоте, отсюда переходит к рассмотрению падения как такового и, наконец, к законам движения маятника.
Что же касается основной темы обсуждения, то результаты даются лишь в продолжение Второго дня. Наиболее интересным результатом является исследование сравнительной прочности на изгиб геометрически подобных стержней. Галилей, основываясь на предположении, что все усилия в зоне разлома являются растягивающими и распределенными равномерно по сечению,, пришел тем не менее к совершенно правильному выводу, что прочность стержня прямоугольного сечения пропорциональна ширине стержня и квадрату его высоты, а для круглого стержня она пропорциональна кубу диаметра.
Благодаря своим исследованиям, содержащимся в первых двух днях «Бесед», Галилей справедливо считается основателем науки о прочности материалов, но нас интересует сейчас другая линия его рассуждений, нашедшая развитие в следующих двух днях дискуссий, линия, связанная с разработкой нового учения о движении.
Именно в Первом дне закладываются основы триумфа математической кинематики Третьего дня. Здесь Галилей опровергает точку зрения Аристотеля на связь движения и существование пустоты. Вначале Симпличио формулирует утверждение Аристотеля, согласно которому существование движения противоречит допущению пустоты. Его доводы таковы: «Он (Аристотель) рассматривает два случая: один — движение тела различного веса в одинаковой среде, другой — движение одного и того же тела в различных средах. Относительно первого случая он утверждает, что тела различного веса движутся в одной и той же среде с различными скоростями, которые относятся между собой как веса тел... Относительно второго случая он принимает, что скорость движения одного и того же тела в различных средах различна и обратно пропорциональна степени густоты, или плотности, среды». Из этого второго положения следует уже знакомый нам вывод, что в пустоте тела «должны были бы передвигаться мгновенно, но мгновенное движение невозможно, поэтому вследствие движения невозможна пустота» [16, II, с. 164].
Галилей последовательно, шаг за шагом, опровергает доводы Аристотеля. Он начинает с того, что заявляет, что скорость падения не зависит от веса тела. В ответ на замечание Симпличио, что подобные утверждения должны иметь экспериментальную основу, Сагредо говорит: «Однако я, синьор Симпличио, который производил эти испытания, могу вас уверить, что пушечное ядро, весящее одну или две сотни фунтов, или даже больше, не достигнет земли быстрее, чем всего лишь на пядь впереди мушкетной пули, весящей всего полфунта, если они будут сброшены с высоты двухсот локтей» [20, VIII, с. 106].[13] Эта фраза вызывала недоумение многих историков, поскольку было непонятно, на какие испытания ссылается Галилей. Скорее всего, он и правда не проводил испытаний с телами данного веса, но наверняка те эксперименты, которые он ставил с наклонными плоскостями и движением маятника, вполне оправдывают это утверждение Сагредо. Этому служит подтверждением и вся логика дальнейшего мысленного эксперимента.
Итак, провозгласив, что скорость падения не зависит от веса тела (что противоречит первому доводу Аристотеля), он поясняет затем свой тезис в несколько этапов. Сперва он высказывает уже знакомую мысль, что тезис справедлив для тел равного удельного веса: «Если бы меньший (камень), положенный на большой камень той же плоскости, двигался бы медленнее (в процессе падения по отношению к большему камню той же плотности), то он замедлил бы отчасти движение большего; таким образом, целое двигалось бы медленнее, будучи больше своей части, что противно нашему положению. Выведем из всего этого, что тела большие и малые, имеющие одинаковый удельный вес, движутся с одинаковой скоростью» [16, II, с. 166].
Теперь Галилею нужно распространить свое правило и на тела разного веса; сделать это впрямую нельзя, поэтому ему приходится обратиться ко второму доводу Аристотеля, чтобы ввести в рассмотрение среду и в процессе этого рассмотрения разом покончить и с первым и со вторым доводом.
Галилей показывает, что утверждение Аристотеля: скорость падения в среде обратно пропорциональна ее плотности — ведет к логическому противоречию, ибо одно и то же тело (например, дерево) может падать в менее плотной среде (воздухе) и подниматься вверх в среде более плотной (воде) [16, II, с. 167—168]. А раз так, то именно среда, а вовсе не вес тела играет основную роль в вопросе о скорости падения. Логика мысленного эксперимента немедленно приводит Галилея к вопросу: что произойдет со скоростями падающих тел, если устранить вообще среду? «Что произойдет с различными движущимися телами различного веса в среде, сопротивление которой равняется нулю; при таких условиях всякую разницу в скорости, которая может обнаружиться, придется приписать единственно разнице в весе» [16, II с. 172].