Финансы - Роберт К. Мертон
Шрифт:
Интервал:
Закладка:
i =(100/75)1/5 – 1 = 5,92%
Таким образом, доходность облигации при ее погашении (IRR) составляет 5,92% в год. Этот результат можно сравнить с 8%, которые вы могли бы получить, если бы поместили деньги в банк. Совершенно понятно, что выгоднее класть деньги в банк.
Правило принятия решений на основе внутренней ставки доходности эквивалентно правилу NPV в том, что касается оценки одноразовой инвестиции, которая не предполагает больше дополнительных вложений, т.е. отрицательных будущих денежных потоков. Но даже и при этом условии данное правило не позволяет проранжировать по степени выгодности потенциальные инвестиционные возможности. В целом это правило можно сформулировать следующим образом: "Когда вам приходится выбирать среди нескольких альтернативных инвестиционных возможностей, выбирайте ту, у которой показатель NPV наивысший".
В примере, который мы решали с помощью нашего финансового калькулятора, есть еще одна переменная: я (количество лет). Давайте рассчитаем эту величину для сберегательной облигации. Мы знаем, что FV равна 100 долл., PV— 75 долл., альтернативная стоимость капитала 8%. Чему же тогда равняется n?
75 долл. =100 долл./1,08n
На финансовом калькуляторе мы вводим PV, FV, i и рассчитываем и:
п
1
PV
FV
Результат
i
S
-75
100
n = 3,74
Мы нашли, что п равняется 3,74 года. Как можно интерпретировать полученный результат? Это значит, что если мы положим деньги в банк (под 8% годовых), понадобится 3,74 года для того, чтобы 75 долл. выросли до 100 долл. Это наблюдение подводит нас к следующему правилу: "Выбирайте вариант инвестирования с кратчайшим периодом окупаемости вложений".
Иными словами, выбирайте тот вариант инвестирования, при котором вы можете превратить вложенные 75 долл. в 100 долл. за самый короткий период времени.
Это правило, однако, применяется только в особых случаях- Как и в случае с правилом IRR, правило "срока окупаемости" не подходит для принятия решений в большинстве случаев. Хотя эти альтернативные правила иногда используются на практике, придерживайтесь правила NPV как безопасного и универсального правила выбора.
4.4.1. Инвестиции в земельную собственность
У вас есть возможность купить участок земли за 10000 долл. Вы уверены, что через пять лет он будет стоить 20000 долл. Если вы можете положить свои деньги в банк и получать 8% годовых, то стоит ли вкладывать их в землю? Вспомним ранее рассмотренное правило: "Инвестируйте деньги в проект, если его чистая приведенная стоимость (NPV) положительна. Не инвестируйте средства, если его NPV отрицательна".
Какой является приведенная стоимость 20000 долл., на получение которых вы рассчитываете через пять лет? В этом случае мы вводим в финансовый калькулятор значения FV, n, i и рассчитываем PV. Затем мы сравниваем рассчитанную нами приведенную стоимость с первоначальными затратами в 10000 долл. и принимаем решение исходя из того, какая из этих величин больше.
n
i
PV
FV
Результат
5
8
?
20000
PV= 13612
Таким образом, инвестиция в земельную собственность имеет приведенную стоимость 13612 долл. Сравнив с 10000 долл. стоимости земли можно сказать, что сделка выгодна. Ее NPV равняется 3612 долл.
Контрольный вопрос 4.5
Докажите, что использование рассмотренных ранее правил принятия инвестиционных решений приводит к тому же результату — инвестиция выгодна.
4.4.2. Заем у друзей
В предыдущем примере мы рассматривали возможность инвестиций, когда требовалось вложить наши деньги сейчас и получить деньги обратно в какой-то момент в будущем. Но очень часто финансовые решения подразумевают совершенно противоположное. Например, предположим, что вам нужно взять в долг 5000 долл. для того, чтобы купить машину. Вы идете в банк и вам предлагают заем под 12% годовых. Затем вы идете к другу, который говорит, что одолжит вам 5000 долл., если вы отдадите ему 9000 долл. через 4 года. Как вам поступить?
Первое, что нам нужно сделать, — это правильно определить параметры проекта, который необходимо оценить. Необходимая вам сумма денег, которые вы можете занять у своего друга (входящий поток денег) и приведенную стоимость которых вы хотите оценить, составляет 5000 долл. Инвестиция, которую вам предстоит сделать, представляет собой приведенную стоимость 9000 долл., выплачиваемых через четыре года (исходящий поток денег).
Для того чтобы разобраться в этом, мы должны рассчитать NPV проекта. Альтернативная стоимость капитала составляет 12% (банковская процентная ставка — ваш лучший альтернативный вариант). Значения денежных потоков у нас есть. Какой будет №Р?
n
i
PV
FV
Результат
4
12
?
-9000
PV= 5719,66
Мы определили, что приведенная стоимость ваших будущих затрат (исходящего денежного потока) составляет 5719,66 долл. Таким образом, NPV проекта равняется 5000 долл.-5719,66 долл.=-719,66 долл.0. Отсюда следует, что инвестиционный проект, предполагающий заем у вашего друга, не заслуживает внимания. Лучше взять нем в банке.
Какова подразумеваемая процентная ставка, которую предлагает вам друг? Ответ мы получим, решив уравнение приведенной стоимости относительно i:
5000 долл. = 9000 долл. /(1 +i)5
Используя финансовый калькулятор, получаем:
n
i
PV
FV
Результат
4
?
5000
-9000
i= 15,83%
Мы нашли, что i = 15,83% годовых. Вам лучше взять заем в банке.
Обратите внимание, что ставка, которую вы только что рассчитали, — это IRR займа у вашего друга. Она равна 15,83%. В предыдущих примерах мы утверждали, что правило IRR действует следующим образом; вкладывайте деньги в проект, если его IRR больше, чем альтернативная стоимость капитала. Это правило применимо в случае, если особенностью проектов является одноразовое вложение (т.е. начальный денежный поток — отрицательный, а будущие потоки — положительные).
Однако должно быть совершенно понятно, что для проектов, в которых речь идет о займе (т.е. начальный денежный поток положительный и будущий денежный поток, предназначенный для выплаты долга, отрицательный) это правило должно быть перевернуто с ног на голову: "Берите в долг там, где IRR по займу меньше, чем альтернативная стоимость капитала".
Как было отмечено ранее, главная потенциальная проблема с правилом IRR может возникнуть там, где есть множественные денежные потоки. В таких случаях IRR может быть не одна или IRR может вообще не быть. Более подробно об этой проблеме мы расскажем дальше.
4.5. МНОЖЕСТВЕННЫЕ ДЕНЕЖНЫЕ ПОТОКИ
Рабочая книга До сих. пор мы рассматривали ситуации, в которых имелся один денежный поток в будущем. Что происходит, если их больше одного? Предположим, что вы хотите отложить деньги на обучение ребенка в колледже 4.3-4.6 или обеспечить себе старость, откладывая каждый год определенную сумму на банковский счет, на который, начисляются проценты. Или же вы подходите к облигации как такому виду инвестиций, который способен обеспечить денежный поток будущих выплат, или думаете о том, чтобы взять заем в банке, что потребует от вас периодических выплат для его погашения. Для того чтобы знать, как вести себя во всех этих более сложных ситуациях, нам нужно только немного расширить рассмотренные концепции.
4.5.1. Временные графики
Полезным инструментом при анализе потоков наличности во времени является временной график (time line), приведенный на рис. 4.4.
Знак "минус" перед денежным потоком означает, что вы вкладываете эту сумму денег (исходящий поток), в то время как отсутствие знака говорит о том, что вы получаете эту сумму (входящий поток). В нашем примере вы инвестируете 100 в начале (точка 0 на графике) и получаете 20 в конце первого периода, 50 — в конце второго, и 60 — в конце третьего.
4.5.2. Будущая стоимость нескольких денежных потоков
Мы начинаем анализ с примера о сбережениях, опираясь на концепцию будущей стоимости. Итак, каждый год вы кладете 1000 долл. на счет, по которому выплачивается 10% годовых, начиная с момента вклада. Сколько денег у вас будет через два года, если до истечения этого срока вы не снимете со счета ни цента?