Финансы - Роберт К. Мертон
Шрифт:
Интервал:
Закладка:
Предположим мы хотим иметь 1000 долл. через год и процентная ставка равняется 10% годовых. Сумма, которую мы должны вложить сейчас, представляет собой приведенную стоимость будущих 1000 долл. Поскольку процентная ставка составляет 10%, мы знаем, что на каждый вложенный нами сегодня доллар мы получим в будущем 1,1 долл. Следовательно, мы можем написать:
Приведенная стоимость х 1,1 = 1000 долл.
Отсюда, приведенная стоимость будет равняться:
Приведенная стоимость = 1000 долл. /1,1= 909,09 долл.
Таким образом, если процентная ставка составляет 10% в год, нам необходимо вложить 909,09 долл. для того, чтобы получить 1000 долл. через год.
Теперь предположим, что 1000 долл. нам нужны через два года. Очевидно, что сумма, которую нам необходимо вложить сегодня при ставке 10%, меньше, чем 909,09 долл., так как проценты в размере 10% годовых будут начисляться на нее в течение двух лет. Для определения приведенной стоимости мы используем наши знания того, как найти будущую стоимость:
1000 долл. = PVx1,12 = PVx1,21
В нашем примере приведенная стоимость равняется:
PV = 1000 долл. /1,12 = 826,45 долл.
Таким образом, 826,45 долл., вложенные сейчас под 10% годовых, вырастут до 1000 долл. за два года.
Расчет приведенной стоимости называется дисконтированием, и процентную ставку, которую используют в таких расчетах, часто называют дисконтной ставкой, или ставкой дисконтирования. Необходимо иметь в виду, что под дисконтированием в финансах понимается нечто совсем иное, чем в розничной торговле. В розничной торговле этот термин обозначает снижение цены с целью продажи большего количества товаров. В финансах же этот термин означает расчет приведенной стоимости денег исходя из их определенной суммы в будущем. Для того чтобы различать эти два вида дисконтирования в мире бизнеса, расчет приведенной стоимости называется анализом дисконтированных денежных потоков, или денежных потоков, приведенных к одному моменту времени (discounted cashflow (DCF) analysis).
Общая формула для вычисления приведенной стоимости 1 долл. через и периодов, если i — дисконтная ставка для данного периода, выглядит следующим образом:
PV=
1
(4.3)
(1+i)n
Это выражение называется коэффициентом приведенной (текущей) стоимости 1 долл. при процентной ставке i за п периодов.
Если мы посчитаем приведенную стоимость 1 долл., который у нас будет через пять лет при ставке дисконтирования 10% годовых, то она составит:
PV = 1/1.1 5 =0,62092 I, I
Для того чтобы найти приведенную стоимость 1000 долл. через пять лет при процентной ставке 10%, мы просто умножаем этот коэффициент на 1000 долл. и получаем 620,92 долл.
Поскольку дисконтирование — это процесс, обратный начислению сложных процентов, то для подсчета текущей стоимости мы можем использовать табл. 4.2, которую мы использовали раньше для того, чтобы найти коэффициенты будущей стоимости. Вместо того чтобы умножать на этот коэффициент, мы поделим на него. Таким образом, мы можем найти приведенную стоимость 1000 долл., получаемых через пять лет при 10% годовых, найдя в табл. 4.2 коэффициент будущей стоимости, который составляет 1,6105, и разделив 1000 долл. на него:
1000 долл./1,6105= 620,92 долл.
Для удобства существуют таблицы коэффициентов приведенной стоимости, подобные табл. 4.4, которая содержит коэффициенты, обратные тем, которые приведены в табл. 4.2. Найдите в табл. 4-4 коэффициент приведенной стоимости для 10% ставки дисконтирования и пяти временных периодов и убедитесь, что он будет 0,6209.
Общая формула для определения приведенной стоимости 1 долл. такова:
PV=
1
(1+i)n
где i — процентная ставка, выраженная как десятичная дробь, п — количество периодов.
Таблица 4.4. Приведенная стоимость 1 долл. для разных периодов и процентных ставок
Процентная ставка, i
Количество периодов, n
2%
4%
6%
8%
10%
1
0,9804
0,9615
0,9431
0,9259
0,9091
2
0,9612
0,9246
0,8830
0,8573
0,8264
3
0,9423
0,8890
0,8396
0,793В
0,7513
4
0,9238
0,8548
0,7921
0,7350
0,6830
5
0,9057
0,8219
0,7473
0,6806
0,6209
Если просмотреть значения в любом из столбцов сверху вниз, то можно заметить, как приведенная стоимость уменьшается тем больше, чем меньше времени остается до того момента, как 1 долл. снимут со счета. При процентной ставке, например, 10% за период приведенная стоимость 1 долл. через год составляет 0,9091 долл., а приведенная стоимость того же доллара, который должен быть получен через 20 лет, — всего 0,1486 долл.
4.3.1. Когда подарок в 100 долларов на самом деле не равен 100 долларам
Ваш брат на свое десятилетие получает сберегательную облигацию на сумму 100 долл., срок погашения которой наступает через пять лет. По этому типу облигаций ничего не выплачивается вплоть до наступления срока погашения. Подсчитывая полученные надень рождения "богатства", он считает, что эта облигация уже принесла ему 100 долл. Сколько она действительно стоит, если ставка дисконта составляет 8% годовых и срок погашения наступит не раньше, чем через пять лет? Как бы вы могли объяснить своему брату его ошибку?
Мы ищем приведенную стоимость 100 долл., которые будут получены через пять лет при ставке дисконта 8% годовых. Существует несколько способов, пользуясь которыми мы можем это подсчитать. Формула следующая:
РV=100 долл./1,085
На обычном калькуляторе мы могли бы найти эту приведенную стоимость, разделив 100 на 1,08 пять раз и получив при этом 68. На финансовом калькуляторе (подобном тому, что изображен на рис, 4.3), мы могли бы ввести значения для n, i и FV, а затем подсчитать приведенную стоимость, нажав кнопку PV. Мы также могли бы воспользоваться коэффициентом приведенной стоимости 1 доллара, взятым из табл. 4.4. Ячейка таблицы, соответствующая процентной ставке 8% и 5 периодам, имеет значение 0,6806. Умножим этот коэффициент на 100 долл. и найдем, что приведенная стоимость равняется 68 долл.
Разъяснить ситуацию вашему брату — задача не из легких. Возможно, для этого лучше использовать концепцию будущей стоимости. Вы могли бы объяснить ему, что сегодня его сберегательная облигация стоит всего 68 долл., потому что все, что ему нужно сделать для того, чтобы через пять лет получить 100 долл. — это положить 68 долл. на сберегательный счет, по которому выплачивается процентная ставка в размере 8% годовых.
Контрольный вопрос 4.4
Какова приведенная стоимость 100 долл., которые будут получены через четыре года при ставке дисконтирования 6% годовых?
4.4. ПРАВИЛА ИНВЕСТИРОВАНИЯ НА ОСНОВЕ ДИСКОНТИРОВАНИЯ ДЕНЕЖНЫХ ПОТОКОВ
Рабочая книга 4.3-4.6
Концепция анализа дисконтированных денежных потоков, которую мы изучили только что в этой главе, предоставляет все необходимое для принятия решений об инвестировании. Суть концепции выражена в уравнении, которое объединяет будущую стоимость, приведенную стоимость, процентную (или дисконтную) ставку и количество периодов ее начисления:
FV=PV(1+i)n (4.4)
Если нам известны значения трех из имеющихся в этом уравнении переменных, мы можем найти значение четвертой и, основываясь на этом, сформулировать правило принятия инвестиционных решений. Наиболее общее правило принятия решений — правило определения чистой приведенной стоимости (NPV). Это правило не только широко используется и применимо к любой ситуации (т.е. если его использовать правильно, то можно застраховаться от неправильного решения), но и интуитивно понятно. Правило NPV звучит следующим образом. Принимайте участие в проекте, если приведенная стоимость будущих денежных поступлений от его реализации превышает ваши первоначальные инвестиции. Главная сложность заключается в том, чтобы не "сравнивать яблоки с апельсинами". Поэтому при расчете будущих денежных потоков (что мы и будем делать через некоторое время) мы должны использовать их приведенную стоимость для того, чтобы их можно было сравнивать с сегодняшними затратами.
Правило NPV гласит: " Чистая приведенная стоимость является разницей между приведенной стоимостью всех будущих денежных поступлений и приведенной стоимостью всех текущих и будущих расходов. Инвестируйте в проект, если его WFположительна. Откажитесь от инвестирования в проект, если NPV отрицательна.