Глаз, мозг, зрение - Дэвид Хьюбел
Шрифт:
Интервал:
Закладка:
Рис. 113. Перерезка мозолистого тела приводит к потере стереопсиса в закрашенной части видимого пространства.
Рис. 114. Результаты продольной перерезки хиазмы по средней линии. Испытуемый совсем не будет видеть две более темные зоны по краям рисунка, слева и справа. Между этими зонами, там, где окраска светлее, не будет стереопсиса, за исключением небольшой зоны треугольной формы за точкой P (здесь вообще ничего не видно) и зоны впереди точки P (здесь стереопсис сохранится).
Если человек фиксирует взглядом точку P, то проекции точки Q, расположенной ближе к глазам в пределах острого угла FPF, — QL и QR — окажутся в левом и в правом глазу по разные стороны от центральной ямки. Соответственно проекция QL передает информацию в левое полушарие, а проекция QR — в правое полушарие. Для того чтобы увидеть, что точка Q ближе, чем P (т.е. получить стереоэффект), нужно объединить информацию левого и правого полушарий. Но единственный способ сделать это — передать информацию по мозолистому телу. Если же путь через мозолистое тело разрушен, человек окажется стереослепым в закрашенной на рисунке области. В 1970 году Д. Митчелл и К. Блейкмор из Калифорнийского университета в Беркли исследовали стереоскопическое зрение у одного человека с перерезанным мозолистым телом и получили в точности предсказанный выше результат.
Второй вопрос, тесно связанный с первым, состоит в том, какое нарушение стереопсиса произойдет, если перерезать по средней линии зрительную хиазму (что проделал Р. Майерс на кошках). Результат здесь будет в определенном смысле противоположным. Из рис. 114 должно быть ясно, что в этом случае каждый глаз станет слепым в отношении стимулов, падающих на носовую область сетчатки, т.е. исходящих из височной части поля зрения. Поэтому стереопсиса не будет в области пространства, окрашенной светлее, где он в норме имеется. Боковые зоны за пределами этой области вообще доступны только для одного глаза, так что стереопсис здесь отсутствует и в нормальных условиях, а после перерезки хиазмы они будут зонами слепоты (на рисунке это показано более темным цветом). В области позади точки фиксации, где перекрываются височные части полей зрения, ставшие теперь невидимыми, тоже наступит слепота. Однако в зоне ближе точки фиксации сохранившиеся полуполя обоих глаз перекрываются, так что здесь должен сохраниться стереопсис, если только не повреждено мозолистое тело. К. Блейкмор нашел все-таки больного с полной перерезкой хиазмы по средней линии (этот больной, будучи ребенком, получил перелом черепа при езде на велосипеде, что, по-видимому, привело к продольному разрыву хиазмы). При проверке у него была обнаружена именно та комбинация дефектов зрения, которую мы только что гипотетически описали.
8. Цветовое зрение
Сотни дополнительных долларов, которые покупатели соглашаются платить за цветной телевизор, предпочитая его черно-белому, означают, что цветовые ощущения для нас достаточно важны. Сложный аппарат глаза и мозга может воспринимать различия в спектральном составе света, отражаемого от видимых предметов, и легко представить себе, какие преимущества давала эта способность нашим предкам. Одним из преимуществ, несомненно, было то, что она затрудняла маскировку другим животным: потенциальной добыче намного труднее слиться с окружающим фоном, если хищник может различать не только интенсивность света, но и цвет. Столь же важным цвет может быть при поиске растительной пищи: обезьяна легко найдет ярко-красную ягоду, выделяющуюся среди зеленой листвы, и это даст животному несомненное преимущество, как, впрочем, и растению, поскольку семена проходят невредимыми через пищеварительный тракт обезьяны и рассеиваются на обширной площади. Для некоторых животных цвет важен при размножении; примерами служат ярко-красная окраска области промежности у макаков и изумительное оперение у самцов многих птиц.
У людей давление отбора, направленное на сохранение или улучшение цветового зрения, видимо, ослабевает, судя по тому, что 7 или 8 процентов мужчин частично или полностью лишены цветового зрения, но отлично без него обходятся, причем этот дефект часто долгие годы остается незамеченным и выявляется лишь после того, как за рулем они проедут на красный свет. Даже те из нас, кто обладает нормальным цветовым зрением, могут испытывать подлинное наслаждение от черно-белых фильмов, которые в художественном отношении иногда могут быть шедеврами киноискусства. Как мы увидим позже, при слабом освещении все мы в цветовом отношении слепы.
Ощущение цвета у позвоночных встречается спорадически; вероятно, в ходе эволюции оно неоднократно редуцировалось или даже исчезало, чтобы потом появиться снова. К млекопитающим, у которых цветовое зрение слабо развито или отсутствует, относятся мыши, крысы, кролики, кошки, собаки и ночная обезьяна дурукули. У сусликов и приматов, включая людей, человекообразных и большинство других обезьян, цветовое зрение хорошо развито. Из ночных животных, зрение которых приспособлено к слабому свету, лишь немногие хорошо различают цвета; это позволяет думать, что по каким-то причинам различение цветов и способность видеть при слабом свете несовместимы друг с другом. Среди других позвоночных цветовое зрение хорошо развито у многих рыб и птиц, но, вероятно, отсутствует или слабо выражено у рептилий и амфибий. Цветовым зрением обладают многие насекомые, в том числе мухи и пчелы. В отношении подавляющего большинства животных у нас нет точных сведений о способности различать цвета — вероятно, потому, что проводить поведенческие или физиологические тесты на цветовое зрение не так легко.
Рис. 115. Цвет используется в живой природе для разных целей, и некоторые из них пока не известны. Синие пятнышки на боках этой рыбы (Hypsypops) становятся все менее яркими, по мере того как рыба растет, и исчезают, когда она достигает зрелости. Какое значение имеют эти пятнышки для других особей того же вида, неизвестно.
Вопросом о цветовом зрении — несоразмерно его биологическому значению для человека — занимался ряд блестящих умов, включая Ньютона, Гёте (сильной стороной которого не были, однако, естественные науки) и Гельмгольца. Тем не менее до сих пор даже художники, физики и биологи часто плохо представляют себе, что такое цвет. Проблема возникает еще в детстве, когда нам впервые дают коробку с красками, а затем говорят, что желтый, синий и красный — это «основные» цвета и что желтый с синим дают зеленый. Многие из нас впоследствии поражаются кажущемуся противоречию с этим фактом, когда с помощью пары проекторов мы отбрасываем на экран два перекрывающихся пятна, желтое и синее, и видим в области их наложения красивый белый цвет. Результат смешения красок — это предмет физики; смешение же световых лучей — в основном вопрос биологии.
Рассуждая о цвете, полезно мысленно разделять эти два аспекта — физический и биологический. Физика, которую нам при этом следует знать, ограничивается лишь некоторыми фактами о световых волнах. Биология же включает психофизику и физиологию. Психофизику интересуют наши чувства как детекторы внешней информации, а физиологию — лежащие в их основе внутренние механизмы, в частности работа нашей зрительной системы. Мы многое знаем о физике и психофизике цвета, но физиология находится все еще на сравнительно примитивном уровне, главным образом из-за того, что необходимые методы стали доступны лишь в последние десятилетия.
Природа светаСвет состоит из частиц, называемых фотонами, каждую из которых можно рассматривать как пакет электромагнитных волн. Будет ли луч электромагнитной энергии именно светом, а не рентгеновскими лучами или радиоволнами, определяется длиной волны — расстоянием от одного гребня волны до следующего: в случае света это расстояние составляет приблизительно 0,0000001 (10–7) метра, или 0,0005 миллиметра, или 0,5 микрометра, или 500 нанометров (нм).
Свет — это по определению то, что мы можем видеть. Наши глаза могут воспринимать электромагнитные волны длиной от 400 до 700 нм. Обычно попадающий в наши глаза свет состоит из сравнительно однородной смеси лучей с различными длинами волн; такую смесь называют белым светом (хотя это весьма нестрогое понятие). Для оценки волнового состава световых лучей измеряют световую энергию, заключенную в каждом из последовательных небольших интервалов, например от 400 до 410 нм, от 410 до 420 нм и т.д., после чего рисуют график распределения энергии по длинам волн. Для света, приходящего от Солнца, этот график похож на левую кривую на рис. 116. Это кривая без резких подъемов и спадов с пологим максимумом в области 600 нм. Такая кривая типична для излучения раскаленного объекта. Положение максимума зависит от температуры источника: для Солнца это будет область около 600 нм, а для звезды более горячей, чем наше Солнце, максимум сдвинется к более коротким волнам — к голубому концу спектра, т.е. на нашем графике — влево. (Представление художников о том, что красные, оранжевые и желтые цвета — теплые, а синие и зеленые — холодные, связано только с нашими эмоциями и ассоциациями и не имеет никакого отношения к спектральному составу света от раскаленного тела, зависящему от его температуры, — к тому, что физики называют цветовой температурой.)