Логика - Александр Ивин
Шрифт:
Интервал:
Закладка:
Известен анекдот об английском философе и логике Б.Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел – римский папа. В доказательстве использовался закон Дунса Скотта.
Отнимем от обеих сторон равенства 2 + 2 = 5 по 3. Получим: 1 = 2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел – два разных лица. Но поскольку 1 = 2, папа и Рассел – это одно и то же лицо.
Приведённые формулировки законов логики и примеров к этим законам являются довольно неуклюжими словесными конструкциями и звучат непривычно, даже если речь идёт о самых простых по своей структуре законах. Естественный язык, использовавшийся в этих формулировках, явно не лучшее средство для данной цели. И дело даже не столько в громоздкости получаемых выражений, сколько в отсутствии ясности и точности в передаче законов.
Мало сказать, что о законах логики трудно говорить, пользуясь только обычным языком. Строго подходя к делу, нужно сказать, что они вообще могут быть адекватно переданы на этом языке.
Не случайно современная логика строит для выражения своих законов и связанных с ними понятий специальный язык. Этот формализованный язык отличается от обычного языка прежде всего тем, что следует за логической формой и воспроизводит её даже в ущерб краткости и лёгкости общения.
5. Логическое следование
Основная задача логики – систематизация правил, позволяющих из имеющихся утверждений выводить новые.
Возможность получения одних идей в качестве логических следствий других лежит в фундаменте любой науки. Это делает проблему адекватного описания логического следования одной из наиболее важных проблем не только логики, но и философии науки.
Логическое следование – это отношение, существующее между посылками и обоснованно выводимыми из них заключениями. Логическое следование относится к числу фундаментальных, исходных понятий логики, которую нередко характеризуют как науку о том, «что из чего следует».
Будучи исходным, понятие логического следования не допускает точного определения. В частности, описание его с помощью слов «видимо», «вытекает» и т.п. содержит неявный круг, поскольку последние являются синонимами слова «следует». Понятие следования обычно характеризуется путём указания его связей с другими логическими понятиями, и прежде всего с понятиями логического закона и модели.
Из высказывания А логически следует высказывание В, когда импликация «если А, то В» является частным случаем закона логики.
Например, из высказывания «Если натрий металл, он пластичен» логически вытекает высказывание «Если натрий не пластичен, он не металл», поскольку импликация, основанием которой является первое высказывание, а следствием второе, представляет собой частный случай логического закона контрапозиции.
Отличительной чертой логического следования является таким образом, то, что оно ведёт от истинных высказываний только к истинным. Предъявление к нему требования не позволять получать ложные заключения из истинных посылок объясняется теоретико-познавательными соображениями. Если бы выводы, относимые к обоснованным, давали возможность переходить от истины ко лжи, то установление между высказываниями отношения логического следования потеряло бы смысл, и логический вывод превратился бы из формы разворачивания и конкретизации знания в средство, стирающее грань между истиной и заблуждением.
Теории логического следования не содержат правил, позволяющих перейти от истинных посылок к ложному заключению. Они удовлетворяют, кроме того, ряду дополнительных условий. Выдвижение этих условий объясняется стремлением дать такое описание логического следования, при котором существование между высказываниями этого отношения зависело бы не только от истинностного значения высказываний, но и от их смысловой связи. Поскольку «связь по смыслу» понимается по-разному, существуют различные теории логического следования. Ими решена задача исключения нежелательных, или парадоксальных, правил следования, подобных закону Дунса Скотта, и показано, что нет привилегированной логической системы, являющейся единственно правильным описанием логического следования.
6. Язык логики предикатов
Логика высказываний не анализирует внутреннюю структуру простых высказываний. Они берутся как неразложимые далее атомы, из которых с помощью связок образуются сложные высказывания.
Логика предикатов – основной раздел современной логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний.
Логика предикатов является расширением логики высказываний: все законы логики высказываний являются также законами логики предикатов, но не наоборот. В этом смысле логика высказываний более фундаментальна, чем логика предикатов.
Предикат – это языковое выражение, обозначающее какое-то свойство или отношение. Предикат, указывающий на свойство отдельного предмета, например, «быть зелёным», называется одноместным. Предикат, обозначающий отношение, называется двухместным, трехместным и т.д. в зависимости от числа членов данного отношения. Например, «любит» – двухместный предикат, «находится между» – трехместный.
В современной логике предикация рассматривается как частный случай функциональной зависимости. Предикатами называются функции, значениями которых служат высказывания. Например, выражение «…есть зелёный» (или «х есть зелёный») является функцией от одной переменной, «… любит… » («х любит у») – функция от двух переменных и т.д. Эти выражения превращаются в высказывания при соответствующей подстановке имён вместо переменных.
В логике предикатов – в дополнение к средствам логики высказываний – вводятся логические операторы
(«для всех») и
Запись (
x) Р(х) означает «Всякий х обладает свойством Р», (
х) Р(х)
– «Некоторые х обладают свойством Р», (
x ) Q(x, у)
– «Существует х, находящийся в отношении Q с у» и т.п.
Формула логики предикатов называется общезначимой, если она истинна в каждой интерпретации, в каждом приписывании содержательного смысла входящим в неё символам. Тавтология логики высказываний является частным случаем общезначимой формулы. В логике предикатов, в отличие от логики высказываний, нет эффективной процедуры, позволяющей для произвольно взятой формулы решить, является ли она общезначимой или нет.
Глава 8
Модальная логика
1. Логические модальности
Модальность – это оценка высказывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью понятий «необходимо», «возможно», «доказуемо», «опровержимо», «обязательно», «разрешено» и т.п. Модальные высказывания – это высказывания, содержащие хотя бы одно из таких понятий. Модальные высказывания делятся на типы в зависимости от той точки зрения, на основе которой формулируются выражаемые ими характеристики. Ранее, при обсуждении модальных высказываний, проводилось различие между логическими, физическими, эпистемическими, нормативными и оценочными модальными высказываниями.
Модальная логика – раздел логики, в котором исследуются логические связи модальных высказываний.
Модальная логика слагается из ряда разделов, или направлений, каждое из которых занимается модальными высказываниями определённого типа. Фундаментом модальной логики является логика высказываний: первая есть расширение второй.
Теория логических модальностей изучает связи логических модальных высказываний, т.е. высказываний, включающих логические модальные понятия: «логически необходимо», «логически возможно», «логически случайно» и т.п.
Логически необходимое высказывание можно определить как высказывание, отрицание которого представляет собой логическое противоречие. Внутренне противоречивы, например, высказывания «Неверно, что, если неон – инертный газ, то неон – инертный газ» и «Неверно, что трава зелёная или она не зелёная». Это означает, что утвердительные высказывания «Если неон – инертный газ, то неон – инертный газ» и «Трава зелёная или она не зелёная» являются логически необходимыми. Понятие логической необходимости связано с понятием логического закона: логически необходимы законы логики и все, что вытекает из них. Логически необходимы, таким образом, все рассматривавшиеся ранее законы логики высказываний.
Истинность логически необходимого высказывания устанавливается независимо от опыта, на чисто логических основаниях. Логическая необходимость является, таким образом, более сильным видом истины, чем фактическая истинность. Например, высказывание «Снег бел» фактически истинно, для подтверждения его истинности требуется эмпирическое наблюдение. Высказывания же «Снег есть снег», «Белое – это белое» и т.п. необходимо истинны: для установления их истинности не нужно обращаться к опыту, достаточно знать значения входящих в них слов. Поскольку данные высказывания логически необходимы, каждое из них можно предварить оборотом «логически необходимо, что…» («Логически необходимо, что снег есть снег» и т.п.).