Логика - Александр Ивин
Шрифт:
Интервал:
Закладка:
Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух – зелёный» и «Дух – не зелёный» не является истинным, поскольку оба они бессмысленные. Закон исключённого третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.
Резкой, но хорошо обоснованной критике подверг закон исключённого третьего голландский математик Л. Брауэр. В начале этого века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего – закона исключённого третьего. Первая статья не превышала трех страниц, вторая – четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведённое ими, было чрезвычайно сильным.
Брауэр был убеждён, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключённого третьего, он настаивал на том, что кроме утверждения и его отрицания имеется ещё третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.
Допустим, что утверждается существование объекта с определённым свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же «В этом множестве нет такого объекта». Закон исключённого третьего здесь справедлив.
Но когда множество бесконечно, объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведён до конца. Закон исключённого третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не является истинным.
Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключённого третьего, – заявлял немецкий математик Д. Гильберт, – все равно, что запретить боксёру пользоваться кулаками».
Критика Брауэром закона исключённого третьего привела к созданию нового направления в логике – так называемой интуиционистской логики. В последней не принимается данный закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них – доказательства путём приведения к противоречию, или абсурду.
С законом исключённого третьего косвенно связан следующий методологический принцип: анализ каждого объекта должен вестись до тех пор и быть настолько полным, чтобы относительно любого утверждения об этом объекте можно было решить, истинно оно или нет. Это требование полноты и всесторонности исследования не относится, конечно, к законам логики. Оно полезно, но нередко оказывается невыполнимым. В случае рассуждений о бесконечных и неопределённых совокупностях объектов, об изменяющихся, текущих состояниях и т.п. изучение объекта не всегда способно достичь такой полноты, чтобы на любой вопрос о нем удалось ответить однозначно «да» или «нет».
4. Логические законы тождества, двойного отрицания и другие
Закон тожестваВнешне самым простым из логических законов является закон тождества. Он говорит: если высказывание истинно, то оно истинно. Иначе говоря, каждое высказывание вытекает из самого себя и является необходимым и достаточным условием своей истинности. Символически:
A → A,
если A, то A. Например: «Если дом высокий, то он высокий», «Если трава чёрная, то она чёрная» и т.п.
В приложениях закона тождества к конкретному материалу с особой наглядностью обнаруживается отмечавшаяся ранее общая черта всех логических законов. Они представляют собой тавтологии, как бы повторения одного и того же и не несут содержательной, «предметной» информации. Это – общие схемы, отличительная особенность которых в том, что подставляя в них любые конкретные высказывания (как истинные, так и ложные), мы обязательно получим истинное выражение.
Закон тождества нередко ошибочно подменяется требованием устойчивости, определённости мышления. Действительно, в процессе рассуждения значения понятий и утверждений не следует изменять. Они должны оставаться тождественными самим себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому. Если мы начали говорить, допустим, о спутниках как небесных телах, то слово «спутник» должно, пока мы обсуждаем эту тему, обозначать именно такие тела, а не каких-то иных спутников. Требование не изменять и не подменять значения слов в ходе рассуждения, конечно, справедливо. Но, очевидно, что оно не является законом логики. Точно так же, как не относится к ним совет выделять обсуждаемые объекты по достаточно устойчивым признакам, чтобы уменьшить вероятность подмены в рассуждении одного объекта другим.
Иногда закон тождества неверно истолковывается как один из законов бытия, говорящий о его относительной устойчивости и определённости. Понятый так, он превращается в утверждение, что вещи всегда остаются неизменными, тождественными самим себе. Такое понимание этого закона, конечно, ошибочно. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остаётся той же, то она такой же и остаётся.
Закон двойного отрицанияЭтим именем называется закон логики, позволяющий отбрасывать двойное отрицание. Этот закон можно сформулировать так: отрицание отрицания даёт утверждение, или: повторенное дважды отрицание даёт утверждение. Например: «Если неверно, что Вселенная не является бесконечной, то она бесконечна».
Закон двойного отрицания был известен ещё в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его следующим образом: если из отрицания какого-либо высказывания следует противоречие, то имеет место двойное отрицание исходного высказывания, то есть оно само.
В символической форме закон записывается так:
~~ А → A,
если неверно, что не-А, то верно А.
Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным законом двойного отрицания: утверждение влечёт своё двойное отрицание. Например: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты».
Символически:
A → ~~ A
если A, то неверно что не-А.
Объединение этих законов даёт так называемый полный закон двойного отрицания:
~~ А ↔ A,
неверно, что не-A, если и только если верно А.
ЗАКОНЫ КОНТРАПОЗИЦИИЗаконы контрапозиции говорят о перемене позиций высказываний с помощью отрицания: из условного высказывания «если есть первое, то есть второе» вытекает «если нет второго, то нет и первого», и наоборот.
Символически:
(А → В) → ( ~ В → ~ А),
если дело обстоит так, что если A, то B, то если не-В, то не-А;
( ~ B → ~ А) → (А → В),
если дело обстоит так, что если не-B, то не-A, то если A, то В.
К примеру: из высказывания «Если есть следствие, то есть и причина» следует высказывание «Если нет причины, нет и следствия», и из второго высказывания вытекает первое.
К законам контрапозиции обычно относят также законы:
(А → ~ В) → (В → ~ А),
если дело обстоит так, что если A, то не-B, то если B, то не-A Например, «Если квадрат не является треугольником, то треугольник не квадрат»;
(~ А → В) → (~ В → А),
если верно, что если не-A, то B, то если не-B то A. К примеру: «Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно».
Контрапозиция подобна рокировке в шахматной игре. И подобно тому, как редкая партия проходит без рокировки, так и редкое наше рассуждение обходится без контрапозиции.
МОДУС ПОНЕНССлово «модус» в логике означает разновидность некоторой общей формы рассуждения. «Модус поненс» – термин средневековой логики, обозначающий определённое правило вывода и соответствующий ему логический закон.