Догонялки с теплотой - О. Деревенский
Шрифт:
Интервал:
Закладка:
Да, но ведь при испарении воды охлаждение всё-таки имеет место. Если теплота испарения тут не при чём, то что же тут при чём? А вот нам подсказывают: конденсированное состояние воды возможно лишь при наличии достаточно большого коллектива её молекул. В процессе испарения воды с тряпочки, уменьшаются размеры остающихся микрокапель – и, при достижении микрокаплей некоторого критического размера, происходит её скачкообразный переход в парообразное состояние. Т.е., происходит взрывное испарение микрокапли, с расширением получившихся водяных паров – а, при расширении газа, он, как известно, охлаждается. И немного охлаждает тряпочку, с которой разлетается. Красота!
И ещё, возвращаясь к разногласиям между академиками и домохозяйками. Домохозяйки, как и академики, знают про сублимацию льда, т.е. про его испарение. Но, в отличие от академиков, домохозяйки имеют здесь практический опыт: они сушат сырое бельё на морозе – вода на белье сначала замерзает, а потом этот лёд испаряется. Домохозяйки отлично знают: высушенное таким образом бельё имеет температуру окружающего воздуха. Они даже не догадываются о том, насколько этот факт антинаучен. Ведь академики, из своих академических соображений, полагают, что скрытая теплота сублимации равна сумме скрытых теплот плавления и испарения. И тогда сублимация должна сопровождаться мощным охлаждающим действием. Желающие могут прикинуть – нельзя ли, с помощью циклически сохнущих на морозе тряпок, наладить дешёвое производство жидкого азота?
Нам, наверное, вежливо укажут на то, что для лазерного воздействия на металлы известны пороговые плотности мощности, выше которых происходит испарение металла. Эти пороговые величины, мол, вполне отвечают тепловому балансу, в котором фигурирует тепло, идущее не только на нагрев металла, но и на его плавление и испарение. Значит, мол, скрытые теплоты плавления и испарения – физически реальны! На это мы культурно ответим: дяденьки, вы невнимательно читали того же Григорьянца, у которого выставлены на всеобщее обозрение формулы для тех самых пороговых плотностей мощности. В этих формулах отнюдь не фигурируют скрытые теплоты плавления и испарения. В них фигурируют эмпирические коэффициенты: пороговые величины получаются верные, но что там происходит в лазерном фокусе – сие остаётся не расшифровано. Такой подход можно истолковать как проявление гуманности: у читателей, мол, и так мозг плавится – так пусть он только плавится, но не испаряется. Этот гуманизм можно понять; но про подтверждения-то реальности скрытых теплот плавления и испарения – не надо ля-ля, хорошо?
«Но ведь при плавлении и испарении, - кричат нам, - разрушаются структуры, рвутся связи! Есть у этих связей энергия, или нет?!» Вон оно чего. Связи-то рвутся! Но, видите ли, связи связям рознь. Есть связи физические, на которых держатся ядерные и атомные структуры. Вот эти связи, действительно, обладают энергией; она так и называется: энергия связи. А при плавлении и испарении рвутся не физические связи, а химические. А у них-то энергии связи как раз и нету. Это не шутка, дорогой читатель. Этот вопрос ключевой, и ниже мы его подробно распишем.
А пока вернёмся в мракобесное средневековье – в те времена, когда концепция теплорода получила мощную академическую поддержку. Впрочем, как эти академики ни пыжились, концепция теплорода уступила-таки место механической модели теплоты. Обычно историки, в качестве ключевого события, упоминают открытие Румфорда (1798), который в Мюнхене издевался над мастеровыми, заставляя их рассверливать стволы пушек тупым сверлом. «Ваша светлость, - пытался смягчить его благородные нравы старшой мастеровой, - оно тупым сверлом сверлить труднее, да и ствол, опять же, греется, а через это калибер вниз уходит!» - «Что сверлить труднее, это я, болван, и сам знаю! А что греется… это интересно!.. Может получиться очень недурно!.. Ай, молодца! Держи вот, выпей кружку пива за здоровье моей светлости!» В докладе Королевскому обществу Румфорд излагал: «источник тепла, возникающего при трении в этих опытах, представляется, по-видимому, неисчерпаемым» - а, значит, это тепло «не может быть материальной субстанцией», а должно сводиться «к представлениям о движении». Сразу чувствуется намётанный взгляд проницательного исследователя. Фурор, как есть фурор! Если забыть про то, что так называемые дикари испокон веков умели добывать огонь трением (причём, несколькими способами)… если забыть про то, что вода нагревается при встряхивании сосуда, в котором она находится… если забыть про то, что Дэви, немного попыхтя, расплавил трением лёд на морозе… если забыть про труды Ломоносова, который 54 годами ранее, в тех же «Размышлениях…», писал: «Очень хорошо известно, что теплота возбуждается движением: …железо накаливается докрасна от проковывания частыми и сильными ударами»… Если про всё это забыть, то открытие Румфорда было, и вправду, выдающееся. Бурные продолжительные аплодисменты!
Чтобы как следует закрепить этот успех, раз и навсегда установили механический эквивалент теплоты: с помощью филигранных калориметрических опытов нашли соответствие между таким-то количеством теплоты, измеряемой в калориях, и таким-то количеством механической работы, измеряемой в джоулях. Эквивалентность заключалась в том, что столько-то калорий или столько-то джоулей давали одинаковое повышение температуры буферного вещества в калориметре. Вот оно! Теплота и работа стали «одной крови» - с размерностью энергии! Температуру тела, как оказалось, можно повысить не только через сообщение ему теплоты, но и через совершение над ним работы! На радостях сформулировали то, что до сих пор называется первым началом термодинамики. Тут, правда, возникло небольшое затрудненьице. Требовалось просто и чётко выразить математически ту идею, что теплота и работа с равным успехом способны давать приращение температуры. В одной части равенства пишем теплоту плюс работу… а в другой чего? Приращение температуры имеет другую размерность! И чёрт его знает, как быть с коэффициентом пропорциональности – теплоёмкости-то у разных веществ разные! Чтобы не лезть в эти дебри, сделали проще: записали в другой части равенства величину, которую назвали внутренней энергией тела. И размерность у неё подходящая, и название скромное, но очень полезное: ну, подарок просто. Вот если кто спросил бы тех, кто вводил понятие внутренней энергии – а что это, мол, такое? – так ему бы сразу ответили: «Это та энергия тела, которая увеличивается при повышении его температуры». А он бы спросил тогда: «А температура – это что?» А ему бы ответили: «А тебе больше всех надо, что ли?» Потому что не говорить же, что температура – это то, что повышается при увеличении внутренней энергии. От понятия «температура» – и без понятия «внутренняя энергия» тошно. Самое честное её определение, в рамках традиционного подхода, следующее: «Температура – это то, что измеряется термометрами». Оно самое честное – потому что здесь дурь сразу видна. А в других определениях температуры дурь видна не сразу, а когда уже жжёт позор за бесполезно прожитые годы.
Что и говорить, повезло создателям первого начала термодинамики, что его уравнение удалось записать без использования температуры. Легко запомнить: внутреннюю энергию тела можно увеличить либо через сообщение теплоты, либо через совершение работы. Ибо теплота – это энергия хаотического движения частиц тела. Сообщи телу теплоту или поработай над ним – это хаотическое движение так и так станет интенсивнее, и температура тела так и так повысится. Всё сходится, в том числе и тепловой баланс! Первое начало термодинамики впечатали в учебники и справочники, на нём взрастили вереницу поколений теплотехников – до сих пор взращивают. И, наверное, лишь очень немногих из них не терзают смутные сомнения. Ведь, по «первому началу», температура тела может измениться только при воздействии на это тело откуда-то извне. Получение тепла – извне! Принятие работы – извне! «Первое начало» однозначно утверждает, что температура тела не может измениться в результате каких-нибудь внутренних процессов в этом теле. Но ведь это шутка, таких процессов полным-полно!
Самым жутким в ряду злостных нарушений первого начала термодинамики являются химические реакции с выделением или поглощением тепла – которые без затруднений протекают в условиях термоизоляции от окружающей среды. Вот, скажем, начинается реакция с выделением тепла. А выделяться ему некуда: термоизоляция мешает. Ладно, греет зона реакции саму себя, не пропадать же добру. Но, в случае реакции с поглощением тепла, всё получается гораздо веселее – неоткуда его поглощать в условиях термоизоляции. Каков смысл формулировки «реакция с поглощением тепла», если единственным тепловым результатом является охлаждение зоны реакции? Это умудриться надо: так «поглощать тепло», чтобы при этом охлаждаться! Заметьте, мы сейчас не уточняем источники тепловых эффектов химических реакций. Мы просто говорим о ситуациях, когда тепловой эффект есть, а передачи тепла или совершённой работы – нет. Укладывается это в первое начало термодинамики? Никоим образом!