Догонялки с теплотой - О. Деревенский
Шрифт:
Интервал:
Закладка:
Короче: если не задавать дурацких вопросов, то всё было распрекрасно в калориметрическом методе, за исключением одного нюанса. Этот метод с самого начала был основан на ключевом постулате о том, что теплотворная материя способна перетекать только от более нагретых тел к менее нагретым. Тогда никто ещё не додумался до простой вещи: если этот ключевой постулат верен, то со временем температуры всех тел выровняются – и, как говорится, аминь. Впрочем, если кто и додумался бы, то ему резонно возразили бы, что Божий замысел не может вмещать такой глупости – и на этом все бы успокоились.
Словом, концепция теплотворной материи в науке уютно пригрелась. Поэтому наш Ломоносов, со своей деревенской простотой, в эту идиллию не вписался. Он ведь не придерживался тех или иных концепций, он их исследовал – и предлагал взамен более адекватные. В «Размышлениях о причине теплоты и холода» (1744) Ломоносов достаточно ясно сформулировал причину теплоты – которая заключается «во внутреннем движении» частичек тела. Кстати, он сразу же сделал феноменальный вывод: «должна существовать наибольшая и последняя степень холода, состоящая в полном покое частичек». Сегодня используется более высоконаучный термин – «абсолютный нуль температуры», но имя Ломоносова при этом не упоминается. Он ведь имел неосторожность разгромить концепцию теплотворной материи! Так, он писал, что философы не показали – «чем именно теплотворная материя вдруг загоняется в нагреваемые тела». «Спрашиваю: каким образом в самую холодную зиму, когда всюду лютый мороз, …порох, зажжённый малейшей внезапно проскочившей искрою, вспыхивает вдруг огромным пламенем. Откуда и в силу какой удивительной способности материя эта собирается в один момент времени?» Если бы у философов были тогда в ходу методы квантовой механики, они бы придумали какую-нибудь «редукцию тепловой функции». Хотя, при всём «средневековом мракобесии», считалось неприличным так откровенно идиотничать – это стало обычным делом лишь в ХХ веке. Ждать было ещё долго… А Ломоносов разобрал следующее заблуждение – насчёт весомости «теплотворной материи». «Философами, а особенно химиками, принимается, что этот блуждающий огонь показывает своё присутствие в телах не только увеличением объёма их, но и увеличением веса. Весьма известный Роберт Бойль… доказал на опыте, что тела увеличиваются в весе при обжигании». Увы, известный Роберт Бойль начудил: при обжигании металла, на нём образуется окалина, и вес образца увеличивается – но за счёт вещества, присоединённого в результате окислительной реакции. «Хотя окалины, удалённые из огня, сохраняют приобретённый вес даже на самом лютом морозе, однако они не обнаруживают в себе какого-либо избытка теплоты. Следовательно, при процессе обжигания к телам присоединяется некоторая материя, только не та, которая приписывается собственно огню… Далее, металлические окалины, восстановленные до металлов, теряют приобретённый вес», причём, «восстановление, так же как и прокаливание, производится тем же – даже более сильным – огнём». Но Ломоносов проделал ещё и контрольные «опыты в заплавленных накрепко стеклянных сосудах, чтобы иссследовать, прибывает ли вес металлов от чистого жару. Оными опытами нашлось, что славного Роберта Бойля мнение ложно, ибо без пропускания внешнего воздуха вес сожженного металла остаётся в одной мере».
По сравнению с этими убийственными доводами, всё учение о теплотворной материи было детским лепетом – это понимали даже подмастерья в химических лабораториях. Но академические мэтры не признавали правоту Ломоносова – они мудро хранили гробовое молчание. «По делу нам возразить нечего, - прикидывали они. – Но не может же такого быть, что мы все дураки, а он один – гений». Причём, эта мысль навязчиво приходила во все академические головы. Хотя академики не сговаривались, внешне это проявлялось как стопудовый мировой заговор. И это всё были честнейшие и благороднейшие люди. Как на подбор – один другого честнее и благороднее. Честный на честном ехал и благородным погонял.
Взять хотя бы Эйлера, который считался другом Ломоносова. Когда Парижская Академия наук объявила конкурс на лучшую работу о природе теплоты, то выиграл конкурс и получил премию Эйлер, который в представленной работе писал: «То, что теплота заключается в некотором движении малых частиц тела, теперь уже достаточно ясно» (1752). Но этот случай с Эйлером был исключением. Остальные «честные и благородные» помалкивали и терпеливо ожидали кончины Ломоносова (1765). И лишь после этого, выждав для верности ещё семь лет, они снова завели свою шарманку про теплотворную материю. Понимаете, признавать правоту Ломоносова было никак нельзя. Вот если бы он сделал какую-нибудь малость – например, разоблачил заблуждения того же Бойля, и всё – то был бы сейчас в учебниках закон Ломоносова, как есть закон Бойля-Мариотта. А Ломоносов увлёкся и перелопатил всю тогдашнюю науку. Согласитесь, не писать же в учебниках «первый закон Ломоносова», «второй закон Ломоносова», и т.д. – когда счёт идёт на многие десятки! Ученики запутаются! Вот почему свежие экспериментальные факты, которые можно было истолковать в духе теплотворной материи, прошли «на ура».
А факты вон какие. В те времена у естествоиспытателей была мода: смешивать такое-то количество холодной воды с таким-то количеством горячей – и определять результирующую температуру смеси. Опыт подтверждал формулу Рихмана: значение температуры было средним взвешенным – в частном случае, при равных количествах холодной и горячей воды, оно было средним арифметическим. И вот: химик Блэк, а затем ещё и химик Вильке, затеяли проверить формулу Рихмана для случая смешивания горячей воды не с холодной водой, а со льдом – решив, что, в точке плавления, «что лёд, что вода – одна лабуда». Результат вышел – сегодня это можно точно сказать – совершенно умопомрачительный. Конечная температура воды для случая исходных равных весов льда при 0оС и воды при 70оС оказалась равной далеко не среднему арифметическому – она оказалась равной 0оС. Умопомрачительно? А то! Умы помрачились настолько, что с восторгом отдались концепции о «скрытой теплоте плавления льда». По этой концепции, для расплавления льда мало нагреть его до температуры плавления, на что потребуется сообщение ему некоторого количества теплотворной материи, в соответствии с его теплоёмкостью – ещё потребуется впендюрить в лёд дополнительное огромное количество теплотворной материи, которая пойдёт на само плавление. Правда, при плавлении, температура льда не изменяется, и термометры не реагируют на эту дополнительную теплотворную материю – оттого теплота плавления и называется «скрытой». Всё продумано! А, главное, опытом подтверждается: куда, мол, уходит запас тепла воды при 70оС, если не на плавление льда?! Так и нашли численное значение его скрытой теплоты плавления. Академики плакали от радости – закрывая глаза на то, что логика Блэка и Вильке работает при непременном предварительном допущении: количество теплоты в природе сохраняется. При этом бредовом допущении, результаты Блэка и Вильке, действительно, подтверждали наличие теплотворной материи. Всё понеслось по новой. Впрочем, старания Ломоносова не пропали даром: теперича теплотворной материи приписали такое специфическое свойство, как отсутствие веса – иначе, в самом деле, смешно получалось. И вышел у них, вместо теплотворной материи, невесомый теплотворный флюид, для которого подобрали меткое название: теплород. И стало у них всё краше прежнего.
Мы почему об этом – так подробно? Потому что полезно знать, как в физике появилась эта дичь про скрытые теплоты агрегатных превращений – которая до сих пор считается научной истиной. Придётся сказать пару слов про «научность» этой «истины».
Представьте: во внутреннем стаканчике калориметра находятся вода и лёд – в тепловом равновесии друг с другом и с буферным веществом. Ничтожное повышение температуры, до т.н. точки ликвидуса – и фазовое равновесие между льдом и водой нарушится: лёд начнёт таять. Откуда будет заимствоваться тепло на это таяние? Из буферного вещества, что ли? Но тогда его температура понизится, и поток тепла «на таяние» прекратится. На самом же деле, лёд растает весь, а температура так и останется в точке ликвидуса. Скандал!
Может, сегодняшние академики считают этот результат каким-то досадным исключением, поскольку в остальных случаях, мол, концы с концами отлично сходятся – например, при расчётах теплового баланса звезды тау-Кита. Нет, любезные, «исключением» вы здесь не отделаетесь. По-вашему, образование льда на открытых водоёмах тоже должно сопровождаться тепловым эффектом – только теперь та самая «теплота плавления» должна выделяться. Вы, любезные, давали себе труд прикинуть – к каким результатам это должно приводить? Лёд нарастает снизу, а теплопроводность у льда на два порядка хуже, чем у воды. Поэтому, практически, вся «теплота плавления» должна выделяться в воду подо льдом. Если подставить справочные величины в простейшее уравнение теплового баланса для рассматриваемого случая, то получится, что образование слоя льда толщиной 1 мм вызывало бы нагрев прилегающего слоя воды толщиной 1 мм на 70 градусов (а слоя воды в 0.5 мм – аж на 140 градусов; правда, уже при 100оС началось бы кипение). Как вам этот результатец, любезные? Может, вы скажете, что мы напрасно не учли тепловое перемешивание воды? Ведь, в интервале от 0о до 4оС, более тёплая вода опускается, а более холодная – поднимается. У, какая! Но, даже в условиях такого перемешивания, при наличии на поверхности воды источника тепла, вода наверху была бы теплее, чем внизу. На самом же деле, типичный арктический профиль температуры в воде подо льдом таков: контактирующая со льдом вода имеет температуру, близкую к точке замерзания, а, по мере увеличения глубины (в пределах некоторого слоя), температура увеличивается. Это с очевидностью свидетельствует: нет потока тепла в воду от льда, даже от растущего. Океанологи это давно сообразили, поэтому они изобрели такую дурилочку: «тепло кристаллизации… уходит через лёд в атмосферу». Что дальше вытворяет это тепло, которое исчисляется, в региональных масштабах, триллионами килокалорий – это океанологов уже не волнует; пусть дальше с этим теплом атмосферщики разбираются. Можно подумать, будто океанологи не знают, что теплопроводность у льда на два порядка хуже, чем у воды. Куда же, спрашивается, раз за разом прутся арктические экспедиции, и чем там занимаются гидрологи вместе с метеорологами – ледяные скульптуры выпиливают, что ли?