Категории
Самые читаемые
RUSBOOK.SU » Документальные книги » Биографии и Мемуары » Омар Хайям - Шамиль Загитович Султанов

Омар Хайям - Шамиль Загитович Султанов

Читать онлайн Омар Хайям - Шамиль Загитович Султанов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 104
Перейти на страницу:
Евклида, а остальные четырнадцать — только при помощи конических сечений или специальных инструментов. Хайяму известны решения только четырех из них, принадлежащие его предшественникам. В своей небольшой работе Хайям критикует «тех, кто хвастлив, тщеславен и бессилен», чьи «души не вмещают ничего, кроме разве лишь понимания чего-нибудь незначительного из наук. Однако, когда они постигают это, им кажется, что это количество и есть то, что заключают в себе науки и что составляет их».

Я знаю этот вид напыщенных ослов:

Пусты, как барабан, а сколько громких слов!

Они — рабы имен. Составь себе лишь имя,

И ползать пред тобой любой из них готов.

В конце трактата говорится: «Если бы не благородство собрания, да будет это благородство вечным, и не достоинство спрашивающего, да сделает Аллах вечной свою поддержку ему, я был бы в большом отдалении от этого, так как мое внимание ограничено тем, что для меня важнее этих примеров и на что расходуются все мои силы». Полемический тон этих высказываний достаточно очевиден. Вероятно, даже занимаясь математикой, Омар Хайям отнюдь не представлял замкнутого в себе, отрешенного от мира ученого. Судя по всему, уже в тот период исследования молодого ученого в области алгебры приводили к дискуссиям по более широкому кругу вопросов.

В этом же трактате Хайям писал: «Если мне будет отпущено время и будет сопутствовать успех, то я изложу эти четырнадцать видов со всеми их разновидностями и их частными случаями и различу среди них возможные от невозможных: некоторые из этих видов нуждаются в некоторых условиях, так что правильный трактат должен охватывать многие предпосылки, приносящие большую пользу в началах этого искусства».

Таким «правильным трактатом» стал знаменитый «Трактат о доказательствах задач алгебры и алмукабалы». Эту алгебраическую работу Хайяма можно разбить на пять частей: введение; решение уравнений первой и второй степени; решение уравнений третьей степени; сведение к предыдущим видам уравнений, содержащих величину, обратную неизвестной, и дополнение.

Работа Омара Хайяма стала возможной в результате его глубокого и систематического изучения предшествующего этапа развития этой отрасли математики. Он ищет и ставит те сложные проблемы, которые, по его мнению, не были разрешены наукой до него, что подтверждают его собственные высказывания: «Один из поучительных вопросов, необходимый в разделе философии, называемом математикой, это искусство алгебры и алмукабалы, имеющее своей целью определение неизвестных, как числовых, так и измеримых».

Здесь, вероятно, следует напомнить, что и в Средние века математика считалась одним из разделов философии. Философские науки делились на теоретические и практические. Теоретические же, в свою очередь, подразделялись на «высшую науку» (то есть философию в нынешнем смысле), «среднюю науку» — математику и «низшую науку» — физику. В данном случае Хайям называет «измеримой величиной» непрерывную геометрическую величину, то есть линию, поверхность и тело в отличие от дискретного количества — натурального числа.

Далее он пишет: «В нем (то есть в этом искусстве алгебры. —  Ш. С., К. С.) встречается необходимость в некоторых очень сложных видах предложений, в решении которых потерпело неудачу большинство этим занимавшихся. Что касается древних, то до нас не дошло сочинение, в котором они рассматривали бы этот вопрос, может быть, они искали решение и изучали этот вопрос, но не смогли преодолеть трудностей, или их исследования не требовали рассмотрения этого вопроса, или, наконец, их труды по этому вопросу не были переведены на наш язык[8]. Я же, напротив, всегда горячо стремился к тому, чтобы исследовать все эти виды и различить среди этих видов возможные и невозможные случаи, основываясь на доказательствах, так как я знал, насколько настоятельна необходимость в них в трудностях задач».

В другом месте трактата Хайям возвращается к этой же мысли: «Следует знать, что этот трактат может быть понят только теми, кто хорошо знает книги Евклида «Начала» и «Данные», так же как две книги «Конические сечения» — сочинения Аполлония[9], который работал в Александрии и Лергане».

Во введении Хайям пишет: «Я утверждаю, что искусство алгебры и алмукабалы есть научное искусство, предмет которого составляют абсолютное число и измеримые величины, являющиеся неизвестными, но отмеченные в какой-нибудь известной вещи, по которой их можно определить. Эта вещь есть или количество, или отношение…» Таким образом, предмет алгебры — это неизвестная величина, дискретная (ибо «абсолютное число» означает число натуральное) или же непрерывная (измеримыми величинами Хайям называет линии, поверхности, тела и время). «Отнесение» неизвестных величин к известным есть составление уравнения.

Задачей алгебры, подчеркивает Омар, является определение как числовых, так и геометрических неизвестных. Здесь Хайям отмечает, что математики исламского мира того времени интенсивно занимались поисками числового решения кубического уравнения. О различных видах уравнений третьей степени он пишет: «Доказательство этих видов в том случае, когда предмет задачи есть абсолютное число, невозможно ни для них, ни для кого из тех, кто владеет этим искусством. Может быть, кто-нибудь из тех, кто придет после нас, узнает это для случая, когда имеется не только три первые степени, а именно число, вещь и квадрат». Такое решение кубического уравнения было найдено только в начале XVI века, через четыреста лет после смерти Хайяма.

Далее Омар Хайям производит классификацию уравнений первых трех степеней. Всего он выделяет двадцать пять форм, из них четырнадцать кубических уравнений, не сводящихся к квадратным или линейным делением на неизвестную или ее квадрат. Значение классификации в том, что применительно к каждой форме подбирается соответствующее построение.

Хайям впервые в истории математики заявляет, что уравнения третьей степени, вообще говоря, не решаются при помощи циркуля и линейки. «Доказательство этих видов может быть произведено только при помощи свойств конических сечений». В 1637 году с подобным утверждением вновь выступил Рене Декарт, и только двести лет спустя, в 1837 году, это было строго доказано П. Д. Венцелем.

Основным в математическом трактате Омара Хайяма является третий раздел, где дано построение корней каждой из четырнадцати форм уравнений третьей степени при помощи надлежаще подобранных конических сечений. Причем сам подбор таких сечений произведен вполне систематически.

Работы Омара Хайяма по алгебре, скорее всего, были известны мусульманским ученым того времени, но они оказали незначительное воздействие на развитие математики в Европе. Там, например, результаты его математических исследований стали известны, по-видимому, тогда, когда они были уже превзойдены европейцами. Алгебраический трактат Хайяма впервые упоминается в Европе в 1742 году в предисловии к учебнику дифференциального исчисления Ж. Меермана. По этому поводу Ж. Э. Монтюкла в своей известной «Истории математики», заметив, что арабы пошли дальше квадратных уравнений, говорит,

1 ... 28 29 30 31 32 33 34 35 36 ... 104
Перейти на страницу:
На этой странице вы можете бесплатно скачать Омар Хайям - Шамиль Загитович Султанов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит