Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Техническая литература » Большая энциклопедия техники - Коллектив авторов

Большая энциклопедия техники - Коллектив авторов

Читать онлайн Большая энциклопедия техники - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 264 265 266 267 268 269 270 271 272 ... 470
Перейти на страницу:

Экспериментальные исследования водовоздушных эжекторов показали, что при изменении в широких пределах параметров работы эжектора (давления рабочей, инжектируемой, сжатой среды, массового расхода воздуха) сохраняется достаточно стабильный объемный коэффициент инжекции. Поэтому в ряде методик расчета водовоздушных эжекторов предлагаются формулы для определения объемного коэффициента инжекции. В камере смешения благодаря большой поверхности контакта между водой и воздухом происходит насыщение воздуха парами воды. Температура пара в эмульсии практически равна температуре воды. Поэтому газовая фаза эмульсии представляет собой насыщенную паровоздушную смесь. Полное давление этой смеси в начале камеры смешения равно давлению инжектируемого сухого воздуха в приемной камере ρ. Парциальное давление воздуха в смеси меньше этого давления на давление насыщенного пара при температуре рабочей среды. Поскольку сжимаемый в эжекторе воздух входит в состав паровоздушной смеси, то и в приведенном выше выражении для объемного коэффициента инжекции значение V представляет собой объемный расход паровоздушной смеси, равный, согласно закону Дальтона, объемному расходу воздуха при парциальном давлении р. Массовый расход инжектируемого воздуха при этом может быть определен из уравнения Клапейрона. При повышении давления в диффузоре пар, содержащийся в эмульсии, конденсируется. На основании результатов испытаний водовоздушного эжектора с одноструйным соплом и цилиндрической камерой смешения длиной около 10 калибров было предложено использовать для расчета водовоздушного эжектора формулы для водоструйного насоса, в которых массовый коэффициент инжекции и заменен объемным (скорость эжектируемой среды равна нулю), удельные объемы рабочей сжатой среды одинаковы.

Опыты показывают, что по мере увеличения GB количество пара в отсасываемой смеси при данной температуре снижается вначале очень быстро, а затем медленнее. Соответственно характеристика раf(GB) при f = const, начинающаяся на оси ординат в точке рн = рп (при GB = 0), возрастает и асимптотически приближается к характеристике, отвечающей отсасыванию сухого воздуха при той же температуре рабочей воды t . Таким образом, характеристика водоструйного эжектора при отсасывании паровоздушной смеси заданной температуры существенно отличается от соответствующей характеристики пароструйного эжектора, представляющей собой (до точки перегрузки) прямую линию, которой отвечает Gn = const.

Можно ради простоты принимать с достаточной для практических целей точностью, что характеристика водоструйного эжектора при отсасывании паровоздушной смеси данной температуры состоит из двух участков, которые по аналогии с характеристикой пароструйного эжектора могут быть названы рабочим и перегрузочным. В пределах рабочего участка характеристики водоструйного эжектора для tН = const давление всасывания можно считать приблизительно постоянным и равным давлению насыщения при температуре отсасываемой смеси, увеличению расхода воздуха, содержащегося в описываемой смеси, здесь отвечает при tv = const значительное уменьшение расхода содержащегося в смеси пара G.

При указанном допущении перегрузочный участок характеристики начинается при расходе воздуха G, которому отвечает в случае отсасывания сухого воздуха давление р, равное давлению рп насыщенного пара при температуре отсасываемой смеси. Для перегрузочного участка, т. е для области GB > G, можно принять, что характеристика эжектора при отсасывании паровоздушной смеси совпадает с его характеристикой на сухом воздухе при данной t.

При отсасывании водоструйным эжектором сухого воздуха его производительность GH при определенном давлении всасывания р может быть увеличена, или при данном G давление всасывания может быть понижено как путем увеличения давления рабочей воды рр так и путем уменьшения противодавления, т. е. давления за диффузором рс. Уменьшить рс можно, например, путем установки водоструйного эжектора на определенной высоте над уровнем воды в сливном баке или колодце. Благодаря этому давление после диффузора снижается на величину давления столба в сливном трубопроводе. Правда, при том же насосе рабочей воды это повлечет за собой некоторое уменьшение давления воды перед рабочим соплом рр, но это лишь частично снизит положительный эффект, достигающийся в результате уменьшения р.

При установке водоструйного эжектора на высоте Н над уровнем воды в сливном колодце давление после диффузора составит Рс = Рб + Ар. При отсасывании водоструйным эжектором паровоздушной смеси уменьшение рс указанным выше путем также благоприятно сказывается на характеристике эжектора, но уже не столько вследствие уменьшения давления всасывания в пределах рабочего участка характеристики, сколько вследствие увеличения при этом протяженности рабочего участка характеристики (т. е. увеличения G).

Криосорбционные насосы

Криосорбционные насосы – основным отличием криосорбционных насосов от конденсационных является способность путем криосорбции откачивать низкокипящие газы (гелий, водород), обеспечиваемая применением адсорбентов, охлаждаемых до сверхнизких (криогенных) температур. В качестве адсорбента в криосорбционных насосах могут использоваться цеолиты, активированный древесный уголь, пористый никель, оксидная пленка алюминия и другие материалы.

По конструкции криосорбционные насосы мало отличаются от конденсационных. При полном насыщении адсорбента газом криосорбционный насос становится конденсационным, однако при низких давлениях (10-5—10-4 Па) он способен сотни и даже тысячи часов работать без использования вспомогательного насоса для откачки низкокипящих газов.

Криосорбционный заливной насос состоит из цилиндрического сосуда с ребрами. Цилиндрический сосуд изготовлен из алюминиевого сплава АД1, на поверхности которого анодным окислением создана высокопористая оксидная пленка алюминия толщиной 120—150 мкм, являющаяся сорбентом.

Оксидная пленка алюминия обладает большой сорбционной емкостью, имеет большую теплопроводность и высокую механическую прочность. Внутрь сосуда с помощью переливного устройства, вводимого в горловину, заливается жидкий гелий. Ребра служат для увеличения геометрической поверхности сорбента, за счет чего повышается сорбционная емкость.

С целью снижения теплопритока сосуд защищен жалюзийным экраном, который охлаждается испаряющимся газообразным гелием. В свою очередь, экран окружен глухим экраном, который охлаждается жидким азотом, находящимся в резервуарах.

Такая система промежуточных экранов обеспечивает дифференциальную откачку отдельных компонентов газа на различных температурных уровнях, что позволяет более рационально использовать емкость сорбента, нанесенного на сосуд. Действительно, при откачке сосуда вначале конденсируются углекислый газ и пары воды на экранах, температура которых поддерживается в пределах 78—90 К, а затем на экране, охлажденном до 25—30 К, происходит конденсация всех остальных газов, кроме гелия, водорода и неона, и, наконец, на ребрах сосуда, имеющих температуру около 4,2 К, сорбируются эти низкокипящие газы, а также та часть других газов, которая не сконденсировалась на экранах.

Криосорбционный насос целесообразно устанавливать непосредственно внутри откачиваемого сосуда, для чего предусмотрен фланец. Предельное остаточное давление, создаваемое криосорбционным насосом, после предварительного обезгазивания цилиндрического сосуда при температуре 420 К составляет 1 × 10-9 Па. Несмотря на относительную простоту конструкции, криосорбционные заливные насосы обладают существенными недостатками, состоящими в необходимости периодической заливки жидкого гелия и азота, трудности автоматизации и контроля наличия хладагентов, а также в необходимости транспортировать жидкий гелий и собирать дорогостоящий газ. Для сбора испаряющегося в насосе гелия применяют мягкий газгольдер, откуда компрессором гелий перекачивают в стандартный баллон с давлением 15 × 106 Па. С целью упрощения эксплуатации современные криосорбционные насосы снабжаются встроенными криогенераторами. При изготовлении и эксплуатации вакуумных насосов возникает необходимость в проверке основных эксплуатационных параметров. Как уже упоминалось, к таким параметрам относят быстроту действия, предельное остаточное давление, наибольшее давление запуска и наибольшее выпускное давление. Измерение параметров обычно проводят на испытательной установке, которая содержит, кроме испытуемого насоса, измерительную камеру, средства измерения давления и потока газа, масс-спектрометрические датчики и необходимую коммутирующую аппаратуру.

1 ... 264 265 266 267 268 269 270 271 272 ... 470
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая энциклопедия техники - Коллектив авторов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит