Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Техническая литература » Большая энциклопедия техники - Коллектив авторов

Большая энциклопедия техники - Коллектив авторов

Читать онлайн Большая энциклопедия техники - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 260 261 262 263 264 265 266 267 268 ... 470
Перейти на страницу:

Отечественная промышленность выпускает высоковакуумные минеральные масла, являющиеся продуктами дистилляции медицинского вазелинового масла. Самое дешевое масло получают путем однократной разгонки, а масло ВМ-5 путем двукратной разгонки вазелинового масла. Масло ИМ-8 обладает более однородным составом и более высокой термической стойкостью, чем масло ВМ-1. Предельное остаточное давление насоса при работе на масле ВМ-5 на порядок ниже, чем при работе на масле ВМ-1, причем достижения остаточного давления в 1,5—2 раза меньше. Следует заметить, что характеристики минеральных масел зависят от сорта нефти, используемой в качестве исходного сырья. Синтетические углеводородные жидкости являются более дорогими по сравнению с минеральными углеводородными жидкостями, но для их производства не требуется дефицитного сырья – нефти; состав и характеристики их точно воспроизводимы.

Отечественной промышленностью освоено производство синтетической углеводородной жидкости на основе алкилнафталинов. Эта жидкость имеет низкое давление пара при нормальной температуре, позволяющее получать предельное остаточное давление диффузионного насоса 10-6—10-7 Па; обладает более высокой термоокислительной стойкостью, чем минеральные масла. Кремнийорганические жидкости – полисилоксановые соединения, молекулы которых состоят из чередующихся атомов кремния и кислорода с присоединенными углеводородными радикалами по свободным связям кремния. Благодаря сильной связи между кремнием и кислородом кремнийорганические жидкости обладают высокой термической и термоокислительной стойкостью. Некоторые жидкости обладают низким давлением пара при нормальной температуре и позволяют получать предельное остаточное давление диффузионного насоса до 10-4 Па. В диффузионных насосах, предназначенных для получения сверхвысокого вакуума, применяют кремнийорганические жидкости ФМ-1 (пента-фенилтрисилоксан) и ФМ-2 (гексафе-нилтетрасилоксап), обладающие ультранизким давлением пара при нормальной температуре 10-9—10-11 Па и позволяющие создавать предельное остаточное давление диффузионного насоса ниже 10-7 Па без использования ловушек, охлаждаемых жидким азотом. Эфиры, используемые в качестве рабочих жидкостей в отечественных диффузионных насосах, представляют собой полифениловые соединения, отличающиеся исключительно высокой термической стабильностью.

Зависимость быстроты действия от температуры откачиваемого газа. Быстрота действия насоса прямо пропорциональна корню квадратному из абсолютной температуры откачиваемого газа. Изменения температуры откачиваемого газа, наблюдаемые обычно на практике, незначительно влияют на быстроту действия насоса. Так, чтобы быстрота действия увеличилась на 10%, температуру откачиваемого газа следует повысить с 293 до 353 К.

Зависимость быстроты действия от рода рабочей жидкости. Если в диффузионный насос заливать различные рабочие жидкости и подводить одинаковую мощность для подогрева, то быстрота действия насоса будет различной. Зависимость быстроты действия насоса от рода рабочей жидкости можно объяснить тем, что жидкости имеют различные термодинамические и физико-химические характеристики, обусловливающие различные режимы работы кипятильники, истечения пара из сопла и соответственно различные структуры струй, а также различные количественные соотношения при взаимодействии с молекулами пара.

Поскольку число факторов, обусловливающих влияние рабочей жидкости на работу насоса, велико, зависимость быстроты действия от рода рабочей жидкости можно выразить простым соотношением, позволяющим проследить характер изменения быстроты действия от рода рабочей жидкости. Кроме того, для многих рабочих жидкостей (вакуумных масел) неизвестны некоторые важные характеристики, например показатель адиабаты k, обусловливающий зависимость режима истечения пара из сопла от рода рабочей жидкости. В связи с этим теоретическое исследование зависимости быстроты действий от рода рабочей жидкости затруднено.

К выбору рабочей жидкости для насоса подходят обычно с чисто практической точки зрения. Так, если в откачиваемой системе недопустимо присутствие углеводородов, применение органических соединений в качестве рабочей жидкости исключается; в таких случаях обычно применяют ртуть. Если же требуется получить возможно более низкое предельное остаточное давление без применения низкотемпературных ловушек, то в качестве рабочей жидкости используют вакуумное масло с хорошим предельным вакуумом и т. д. Конструирование и отработку насоса ведут обычно для определенной рабочей жидкости, так что характеристики насоса являются оптимальными для этой жидкости.

Для работы на другой рабочей жидкости необходимо подбирать (изменением мощности) новый оптимальный режим работы насоса. Предельное остаточное давление rncoca определяется противодиффузией газа со стороны форвакуума, давлением пара рабочей жидкости при температуре стенок насоса, выносом газов со струей пара из кипятильника, а также газовыделениями стенок насоса.

Противодиффузия газа через струю зависит от давления газа под струей, плотности и скорости паровой струи, молярной массы газа. Некоторые рабочие жидкости, нагреваясь до рабочей температуры, в кипятильнике могут частично разлагаться с выделением газообразных продуктов (так называемый термический крекинг масла), которые выносятся со струей в откачиваемый объем. Естественно, что термическое разложение рабочей жидкости происходит тем интенсивнее, чем выше температура пара в кипятильнике и, соответственно, чем выше подводимая к насосу мощность. Следовательно, кривая зависимости предельного остаточного давления от мощности подогрева должна иметь минимум. С увеличением мощности подогрева предельное остаточное давление сначала уменьшается вследствие уменьшения противодиффузии, а затем, достигнув минимального значения при некоторой мощности подогрева, начинает возрастать вследствие выделения газообразных продуктов термического разложения масла. Выделение из струи газов, попадающих с конденсатом в кипятильник, существенно зависит от растворимости газов в конденсате, температуры конденсата и давления, при котором происходит растворение газа в конденсате. Чем ниже давление, при котором газ контактирует с пленкой конденсата, и выше температура конденсата, тем меньше растворимость газа в конденсате, а соответственно, меньше эмиссия газов из струи и ниже предельное остаточное давление насоса.

На предельное остаточное давление существенно влияет выделение газов из стенок насоса. Обезгазивание стенок насоса путем прогрева до 370 К позволяет понизить предельное остаточное давление насоса более чем на порядок. Наибольшее выпускное давление насоса определяется работой последней выпускной ступени и зависит, главным образом, от плотности струи, расхода пара через сопло и конструкции ступени. Для увеличения наибольшего выпускного давления необходимо увеличивать плотность паровой струи и расход пара через сопло, т. е. мощность подогрева насоса. Наибольшее выпускное давление высоковакуумного насоса зависит от впускного давления, причем характер зависимости определяется, главным образом, конструкцией выпускной ступени.

Во многих конструкциях высоковакуумных насосов выпускная ступень выполнена в виде эжекторного узла с конической сужающейся камерой смешения. В этих насосах наибольшее выпускное давление возрастает с увеличением впускного давления. Обычно насосы характеризуются наибольшим выпускным давлением при предельном остаточном давлении или при наибольшем впускном давлении в рабочем диапазоне (диапазон давлений, в котором быстрота действия постоянна).

Для сравнительной оценки степени совершенства диффузионных пароструйных насосов применяют удельные характеристики, важнейшими из которых являются удельная быстрота действия, вакуум-фактор и термодинамический коэффициент полезного действия. Удельная быстрота действия представляет собой быстроту действия насоса, отнесенную к единице площади впускного отверстия. Вакуум-фактор – отношение фактической быстроты действия насоса к теоретической максимально возможной быстроте действия:

φ = 5факт /5теор

Вакуум-фактор – более наглядная характеристика работы вакуумных насосов, чем удельная быстрота действия, так как непосредственно указывает, насколько фактическая быстрота действия отличается от предельной. При этом удельную теоретическую быстроту действия можно рассматривать как объем газа, который теоретически может пройти через 1 см2 площади диффузионной диафрагмы в единицу времени.

Термодинамический КПД в соответствии с выражением для различных пароструйных диффузионных насосов имеет порядок 10-4—10-3, т. е. только сотые или десятые доли процента подводимой мощности затрачиваются на совершение работы сжатия газа. Если температура масла в насосе быстро повышается, то из сопла истекает несформированный еще дозвуковой поток, что приводит к резкому увеличению обратного потока масла из насоса; через некоторое время поток сформировывается, скорость его становится сверхзвуковой, а обратный поток масла резко уменьшается до минимального значения. После этого температура в кипятильнике еще некоторое время повышается до рабочей, и обратный поток масла увеличивается в результате увеличения плотности пара на выходе из сопла; далее при установившейся рабочей температуре пара в кипятильнике обратный поток практически не меняется.

1 ... 260 261 262 263 264 265 266 267 268 ... 470
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая энциклопедия техники - Коллектив авторов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит