Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Техническая литература » Большая энциклопедия техники - Коллектив авторов

Большая энциклопедия техники - Коллектив авторов

Читать онлайн Большая энциклопедия техники - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 265 266 267 268 269 270 271 272 273 ... 470
Перейти на страницу:

Для унификации условий измерения измерительная камера всегда выбирается определенных размеров. Так, диаметр измерительной камеры рекомендуется брать для большинства типов насосов (кроме механических и адсорбционных) – равный диаметру входного отверстия насоса, но не менее 100 мм. При входных отверстиях меньше 100 мм между камерой и насосом устанавливают переходник. Хотя известно много экспериментальных методов измерения быстроты действия насосов, в промышленности и лабораторной практике рекомендован метод, при котором измеряют поток газа, напускаемого в измерительную камеру, и затем по соответствующим соотношениям определяют быстроту действия насоса. В зависимости от ожидаемой производительности насоса применяют различные методы измерения потока газа. При измерении быстроты действия механических вакуумных насосов измерительная камера должна иметь объем не менее пяти объемов всасывания за один оборот ротора насоса. Измерение быстроты действия проводят методом постоянного давления. Для этого измерительную камеру откачивают до давления 0,1 Па Рн (Рн – давление, при котором требуется измерить быстроту действия). Затем с помощью натекателя напускают в измерительную камеру газ до установления давления Рн и измеряют при этом одним из способов поток напускаемого газа Q'Н. Так, если поток газа лежит в пределах от 1000 до 0,10 м3 × Па/с, для его измерения применяют ротаметры, если в пределах от 2 до 1,0 × 10-5 м3 × Па/с – измерительные бюретки, и, наконец, при потоках газа меньше 1,0 × × 10-5 м3 × Па/с измеряют поток методом калиброванной диафрагмы и двух манометрических преобразователей.

По формуле вычисляют быстроту действия насоса при данном давлении Рн. Устанавливая натекателем различные давления Рн в измерительной камере и измеряя при этом поток напускаемого газа, снимают таким образом зависимость быстроты действия насоса от впускного давления SH = f(Рн). При испытаниях газобалластных насосов проводят измерение быстроты действия с закрытым и открытым газобалластным устройством.

Измерение быстроты действия насосов других типов осуществляется аналогичным образом. При определении характеристик адсорбционных насосов вместо быстроты действия обычно находят максимальный объем Vмакс, откачиваемый адсорбционным насосом, от давления 105 Па до давления 1,33 Па за установленное время.

Измерение предельного остаточного давления. У насосов объемного действия обычно измеряют полное предельное остаточное давление газов и паров. Для этого производят откачку измерительной камеры до тех пор, пока в ней не установится так называемое равновесное давление, которое затем в течение следующих трех часов изменится не более чем на 10%. Это установившееся равновесное давление и принимают за предельное остаточное давление насоса. Измерение предельного остаточного давления газов у насосов других типов производится аналогичным образом, с той лишь разницей, что применяют измерительную камеру и до измерений проводят обезгазивание насоса (если это предусмотрено его конструкцией) и измерительной камеры прогревом при температуре 600—700 К в течение 12—24 ч. За предельное остаточное давление в этом случае принимают давление, полученное через 24 ч после выключения прогрева. Следует подчеркнуть, что во избежание ошибки в измерении предельного остаточного давления проводимость трубопровода, соединяющего измерительную камеру с манометрическим преобразователем, должна быть не менее 50 л/с. Предпочтительней, однако, использовать манометрические преобразователи открытого типа. Измерение наибольшего выпускного давления производят при испытаниях эжекторных, бустерных и высоковакуумных диффузионных насосов и агрегатов.

Для измерения наибольшего выпускного давления откачивают измерительную камеру до давления в 10 раз меньшего, чем давление, при котором производительность насоса максимальная.

С помощью натекателя, установленного в измерительной камере, увеличивают давление до значения, соответствующего максимальной производительности насоса. Затем натекателем, установленным на магистрали (соединяющей выпускной патрубок насоса с насосом предварительного разрежения), напускают газ до тех пор, пока давление в измерительной камере не возрастет на 50% больше ранее достигнутого давления. Давление, измеренное в этот момент на выпускном патрубке насоса, принимают за наибольшее выпускное давление.

Магнитные электроразрядные насосы

Магнитные электроразрядные насосы – принцип действия: в отличие от ионно-геттерных насосов с термическим испарением титана в магнитных электроразрядных насосах для получения активных пленок и для ионизации газов используются разряд в магнитном поле и вызванное им катодное распыление титана. Вследствие этого в магнитных электроразрядных насосах устранен такой существенный недостаток, присущий ионно-геттерным насосам, как наличие накаленных элементов электродной системы.

Схема простейшего диодного магнитного электроразрядного насоса выглядит следующим образом: анод насоса образован из отдельных разрядных ячеек, с открытых концов которых расположены общие катоды из титана.

Эта электродная система помещается в магнитное поле, перпендикулярное плоскости катодов. При подаче на электроды разности потенциалов в несколько киловольт в ячейках возникает газовый разряд, который благодаря магнитному полю поддерживается в широком диапазоне давлений. Положительные ионы газов, образующиеся в разряде при соударении электронов с молекулами, ускоряются электрическим полем в направлении катодов и внедряются в них, вызывая распыление материала катодов. Распыленный с катодов титан оседает главным образом на аноде. Активные газы (азот, кислород), присутствующие в вакуумной системе, попадая на свеженанесенную на аноды пленку, связываются на ней, образуя устойчивые химические соединения с титаном. Образующиеся при реакциях устойчивые соединения – нитриды или окислы титана – могут возникать и на катоде в момент попадания туда ионов или молекул азота и кислорода. Однако из-за сильного распыления материала катода активные газы, в конце концов, оказываются в основном на аноде, оставаясь лишь на их участках катода, которые почти не подвергаются «минной» бомбардировке. Многоатомные газы, пары воды, углекислый газ, аммиак, углеводороды, по-видимому, диссоциируют в разряде. Ионы осколков молекул также вызывают распыление материала катода. Ионы легких газов (водород, дейтерий, гелий) не вызывают заметного распыления материала катода. Для них более существенным является второй механизм откачки: ионы легких газов, имеющие малые размеры, могут внедряться в материал катода и диффундировать и его. Таким образом, быстрота действия магнитного электроразрядного насоса зависит от рода газа или пара.

Первоначально относительно высокая быстрота действия насоса по этим газам постепенно уменьшается, особенно для гелия, не образующего с титаном твердых растворов. При бомбардировке материала катода ионами тяжелых газов или при нагреве его разрядом до температуры свыше 470 К наблюдается обратное выделение легких газов. Тяжелые инертные газы – аргон, криптон и ксенон – откачиваются благодаря адсорбции ионов катодом. Вследствие больших молекулярных размеров диффузия этих газов в катод затруднена, и первоначально высокая быстрота действия насоса по газам резко уменьшается. Поглощение этих газов происходит в основном на периферийных участках ячеек катодов, куда наносится титан, интенсивно распыляемый тяжелыми ионами из центральных частей ячеек катодов. При откачке аргона с давлением около 10-3 Па и при длительной откачке воздуха с давлением больше 10-3 Па, содержащего 1% аргона, наблюдается резкое периодическое повышение давления, называемое аргонной нестабильностью. Тем не менее присутствие аргона с парциальным давлением меньше 10-3 Па при периодическом обезгазивании насоса оказывается полезным, так как при этом интенсифицируется распыление материала катода и увеличивается скорость откачки активных газов.

Таким образом, важной особенностью магниторазрядных насосов является своеобразная авторегулировка скорости испарения материала катодов, обеспечивающая экономное расходование материала и большой срок службы насоса. Поскольку ионный ток приблизительно пропорционален давлению, он часто используется для оценки давления в насосе и откачиваемом сосуде. Простота устройства и возможность работы в любом положении также выгодно отличают магнитные электроразрядные насосы от других.

Для понимания работы магниторазрядных насосов, помимо различий в механизме поглощения различных газов, необходимо иметь в виду изменение характера газового разряда с изменением давления. При давлении больше 10-1 Па ток разряда велик вследствие большой электропроводности разрядного промежутка; чтобы разряд при этом не перешел в дуговой, ток разряда специально ограничивается (в малых насосах используется балластное сопротивление, в крупных насосах используют более сложные электрические цепи), что приводит к уменьшению падения напряжения на разрядном промежутке. При этом уменьшается энергия ионов и, следовательно, резко снижается скорость распыления материала катодов. Поэтому быстрота действия насоса при высоких давлениях невелика, а относительно большой ток вызывает разогрев электродов и сильное газовыделение, вследствие чего давление в системе повышается. В этих условиях целесообразно продолжать откачку насосом предварительного разрежения до начала периода пуска, когда эффект откачки магнитным электроразрядным насосом становится заметным.

1 ... 265 266 267 268 269 270 271 272 273 ... 470
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая энциклопедия техники - Коллектив авторов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит