Большое, малое и человеческий разум - Роджер Пенроуз
Шрифт:
Интервал:
Закладка:
Глава 2. Тайны квантовой механики
В гл. 1 я попытался показать, что структура окружающего нас физического мира очень сильно зависит от законов математики (как это было показано на рис. 1.3), причем точность, с которой математика описывает фундаментальные физические аспекты, иногда представляется просто поразительной и заставляет вспомнить название знаменитой лекции Юджина Вигнера «Непостижимая эффективность математики в естественных науках». Список блестящих математических описаний природных явлений действительно выглядит весьма впечатляюще. Сюда входят, например:
Геометрия Евклида, которая на расстояниях порядка метров имеет точность порядка диаметра атома водорода. Как я уже отмечал в гл. 1, общая теория относительности не позволяет ей быть абсолютно точной, однако для практических целей точность евклидовой геометрии всегда исключительно высока.
Механика Ньютона, точность которой доходит до10-7 (для дальнейшего повышения точности необходимо учитывать релятивистские эффекты).
Электродинамика Максвелла, которая в сочетании с квантовой механикой достаточно хорошо описывает взаимодействия при изменении масштаба в 1035 раз, т. е. от размеров элементарных частиц до межгалактических расстояний.
Эйнштейновская теория относительности, о которой я уже рассказывал в гл. 1. В той области, где она применима (и где она обобщает и включает в себя квантовую механику), точность этой теории доходит до 10-14, что на семь порядков превышает точность механики Ньютона.
Квантовая механика, которая является темой этой главы и также представляет собой весьма точную теорию. Например, в квантовой электродинамике, представляющей собой сочетание квантовой механики, электродинамики Максвелла и специальной теории относительности, точность некоторых расчетов доходит до 10-11. В частности, можно особо отметить, что используемая в квантовой электродинамике так называемая «система единиц Дирака» включает в себя вычисленное значение магнитного момента электрона 1,001159652(46), которое прекрасно согласуется с экспериментально найденным значением 1,0011596521(93).
Особенно важно то, что во всех указанных теориях применение математических методов не только обеспечивает исключительную эффективность и точность описания физической картины, но и представляет интерес для развития самой математики, поскольку некоторые наиболее плодотворные идеи ее развития возникли именно на основе теоретических построений физики. В качестве примера можно указать обширные разделы математики, возникновение и развитие которых было обусловлено физическими исследованиями:
• теория действительных чисел;
• геометрия Евклида;
• математический анализ и теория дифференциальных уравнений;
• геометрия симплексов;
• дифференциальные формы и уравнения в частных производных;
• геометрии Римана и Минковского;
• теория комплексных чисел;
• теория гильбертова пространства;
• теория функциональных интегралов... и т. д.
Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.
В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.
Рис. 2.1.
Мне, как и любому другому физику, представляется очевидным, что если мы правильно понимаем законы квантовой физики, то из нее должны выводиться законы классической физики. Проблема, однако, заключается в том, что на практике мы всегда пользуемся либо классическим, либо квантовым уровнем описания, что, к сожалению, напоминает подход древних греков, для которых было абсолютно естественным наличие в мире двух совершенно различных наборов законов природы, действующих соответственно на Земле и в мире Идей или божественных установлений. Величие и мощь подхода, развитого Галилеем и Ньютоном, заключаются именно в объединении этих двух наборов, позволяющем понимать мир в рамках единой системы физических законов. Похоже, что современная физика вновь возвращает нас к ситуации, когда мы имеем разные наборы законов для классического и квантового уровней описания мира.
Во избежание недоразумения мне бы хотелось сразу оговорить одно обстоятельство, связанное с рис. 2.1. Помещая рядом с именами Ньютона, Максвелла и Эйнштейна слова «классический уровень» или «детерминизм», я вовсе не хочу сказать, будто эти ученые сами верили в детерминизм поведения Вселенной. Мы просто не знаем этого точно, хотя почти с уверенностью можно утверждать, что Ньютон и Максвелл, например, не разделяли этой точки зрения, в то время как Эйнштейн ее поддерживал. Пометки «детерминизм» и «вычислимость» относятся лишь к созданным этими учеными теориям, а не к их личной вере. Точно так же к квантовому уровню добавлены слова «уравнение Шредингера», хотя я не думаю, что сам Шредингер считал свое уравнение пригодным для описания «всей физики». Я еще вернусь к этому вопросу, а пока просто напоминаю читателю, что люди и создаваемые ими теории — вовсе не одно и то же.
Двухуровневая картина на рис. 2.1 сразу вызывает очевидные вопросы: «Развивается ли Вселенная только в соответствии с законами квантовой механики? Можно ли объяснить все поведение Вселенной в рамках квантовой механики?» Прежде чем перейти к их обсуждению, я должен хотя бы очень кратко перечислить те проблемы, которые может описывать и объяснять квантовая механика.
• Стабильность атомов. До появления квантовой механики оставалось совершенно непонятным, почему электроны в атомах не падают по спирали на ядро. В классической физике существование устойчивых атомов запрещено.
• Спектральные линии. Только наличие в атомах квантовых энергетических уровней и переходов между ними позволяет объяснить появление линий излучения, частоты которых мы можем наблюдать и предсказывать совершенно точно.
• Химические силы. Образование и существование молекул обусловлены силами, имеющими принципиально квантово-механический характер.
• Излучение черного тела. Вид спектра абсолютно черного тела может быть объяснен только при условии квантового характера излучения.
• Надежность передачи наследственной информации. Биологические организмы осуществляют эту передачу квантовомеханическим путем на уровне молекул ДНК.
• Лазеры. Действие лазера основано на существовании индивидуальных квантовых переходов между квантовыми уровнями молекул, а также на квантовой природе самого светового излучения (фотоны являются частицами Бозе-Эйнштейна).
• Сверхпроводимость и сверхтекучесть. Эти явления, наблюдаемые при очень низких температурах, связаны с дальнодействующими квантовыми корреляциями (электронов и других частиц) в некоторых веществах.
• ... и т. д., и т. д.
Другими словами, квантовая механика почти вездесуща и давно используется в окружающих нас бытовых приборах и в различных высокотехнологических изделиях (например, в компьютерах). Элементарные частицы описываются квантовой теорией поля (представляющей собой сочетание квантовой механики и специальной теории относительности Эйнштейна), точность которой, как я уже отмечал, доходит до10-11. Разумеется, приведенный список лишь частично отражает огромную роль квантовой механики в современной науке.