Большое, малое и человеческий разум - Роджер Пенроуз
Шрифт:
Интервал:
Закладка:
а — частица со спином 0 распадается на две частицы со спином ½, например, на электрон Е и позитрон Р. Измерение спина одной из этих частиц, очевидно, приводит к мгновенной фиксации точного значения второй частицы; б — эксперимент группы Алена Аспекта. Два противоположно направленных фотона испускаются источником в запутанном состоянии. Решение о том, поляризацию какого из фотонов следует измерить, принимается только тогда, когда они уже удалены друг от друга на значительное расстояние, не позволяющее никаким образом передать информацию о результате измерения.
Решение о том, какое из направлений поляризации фотонов будет измерено, принималось лишь после того, как фотоны удалялись от источника на значительное расстояние и попадали в детекторы A и В. Результаты измерений показали, что смешанная вероятность поляризационных состояний фотонов, зарегистрированных в детекторах A и В, согласуется с квантовомеханическими предсказаниями (как ожидали почти все, включая и самого Белла), но противоречит естественному предположению о том, что эти два фотона являются отдельными, совершенно независимыми объектами. Эксперимент Аспекта продемонстрировал наличие эффектов квантовой запутанности на расстоянии около 12 метров, но я уже слышал, что в некоторых экспериментах по квантовой криптографии аналогичные эффекты зарегистрированы на расстояниях порядка километров.
Я еще раз хочу подчеркнуть, что в таких нелокальных эффектах события, происходящие в различных точках A и В, оказываются каким-то таинственным образом связанными друг с другом. Квантовая запутанность (entanglement) — штука довольно тонкая. События оказываются связанными таким образом, что характер связи исключает всякую возможность передачи сигнала из точки А в точку В (этот факт существенно важен для согласования квантовой механики с теорией относительности). В противном случае квантовую запутанность можно было бы просто использовать для передачи сигнала со скоростью большей, чем скорость света. Этот эффект является чисто квантовым, и в классической механике мы не можем даже представить себе его аналог (т. е. ситуацию, когда объекты одновременно следует считать и совершенно независимыми, и связанными друг с другом). Все это в самом деле весьма необычно.
Еще один пример Х-тайн связан c нуль-измерением, которое можно проиллюстрировать на примере так называемой задачи Элицура-Вайдмана об испытании бомб. Предлагаю читателю вообразить себя членом группы террористов, которая захватила склад с большим количеством бомб. Головная часть каждой из них снабжена сверхчувствительным детектором, к которому прикреплено зеркальце. Детонатор срабатывает при попадании на зеркальце даже одного-единственного кванта света. При этом известно, однако, что во многих бомбах детонаторы испорчены, т. е. рычажки-плунжеры, соединенные с зеркальцем, заржавели и уже не срабатывают при воздействии только одного фотона. К зеркальцу на головной части такой бомбы можно относиться как к обычному отражателю, а не как к подвижной детали детонатора. Поведение бомб при воздействии фотонов показано на рис. 2.6, а. Задача террористов заключается в том, чтобы найти среди набора одинаковых по виду бомб именно такую, у которой детонатор заведомо исправен. Классическая физика вообще не позволяет решить эту задачу, поскольку единственный способ определить исправность детонатора заключается в каком-либо воздействии на него (его можно, например, потрогать, осветить и покачать), после чего исправная бомба должна просто взорваться.
Рис. 2.6.
а — задача Элицура-Вайдмана о выборе исправных бомб. Сверхчувствительный детонатор исправной бомбы срабатывает при воздействии одиночного фотона видимого света, а в неисправной бомбе детонатор «заедает». Задача заключается в нахождении исправной бомбы среди большого числа неисправных; б — схема тестирования бомб. При испытании исправной бомбы зеркало внизу справа срабатывает как простое измерительное устройство. Если это измерение показывает, что фотон прошел по другой траектории, то детектор в точке В зарегистрирует фотон, что не может произойти при испытании неисправной бомбы.
Возможно, следующее утверждение покажется вам очень странным, но квантовая механика позволяет нам провести испытание того, что могло бы случиться, но не произошло (философы называют такую ситуацию противофактической). Сейчас я продемонстрирую, каким замечательным образом квантовая механика дает нам возможность получать реальные результаты из некоторых противофактических данных! На рис. 2.6, б приведена схема эксперимента, предложенного Элицуром и Вайдманом в 1993 г. для решения поставленной задачи. Предположим, что мы имеем дело с бомбой-болванкой, зеркальце которой из-за дефекта не реагирует при отражении фотона. Фотон от источника сначала проходит через полупрозрачное (иногда его называют полупосеребренным) зеркало, которое пропускает только половину попадающего на него света и отражает другую половину. Вы можете считать, что зеркало просто пропускает половину падающего на него светового потока и отражает другую половину. Однако на квантовом уровне с одиночными фотонами могут происходить очень странные вещи. Действительно, каждый отдельный фотон, испускаемый индивидуальным источником, можно представить в виде квантовой суперпозиции двух возможных траекторий фотона, описывающих пропускание и отражение. Зеркало на бомбе установлено под углом 45° к траектории пропускаемого пучка фотонов. Отраженная часть пучка еще раз отражается (на этот раз целиком) от другого, полностью посеребренного зеркала (также расположенного под углом 45°), после чего оба луча (или, точнее, обе половинки исходного пучка) соединяются при помощи еще одного полупосеребренного зеркала, как показано на рис. 2.6, б. Детекторы при этом располагаются в точках А и В.
Рассмотрим, что происходит с одиночным фотоном, испущенным источником, при попадании на головную часть неисправной бомбы. На первом полупосеребренном зеркале квантовое состояние фотона расщепляется на два отдельных состояния, одно из которых соответствует фотону, пропущенному через полупосеребренное зеркало к неисправной бомбе, а второе — фотону, отраженному по направлению к неподвижному зеркалу (такая суперпозиция возможных траекторий фотона в точности совпадает с суперпозицией, рассмотренной выше для эксперимента с прохождением фотона через две щели на рис. 2.2, а также, что имеет особое значение, наблюдается при сложении спинов). Предположим, что длины траекторий между двумя полупрозрачными зеркалами совершенно одинаковы. Для определения состояния фотона в момент достижения им регистрирующих устройств необходимо сравнить траектории обеих составляющих суперпозиции состояний. Легко заметить, что траектории «взаимопогашаются» в точке В, но одна из них продолжается дальше до точки А, вследствие чего в схеме должен иногда срабатывать только детектор А, в то время как детектор В не должен ничего регистрировать во всех случаях. Это весьма похоже на интерференционную картину, наблюдаемую в экспериментах рис. 2.2, когда интенсивность облучения некоторых участков постоянно равна нулю вследствие взаимного гашения квантовых состояний в этих точках. Таким образом, при тестировании (т. е. облучении) неисправной бомбы детектор А должен срабатывать постоянно, а детектор В — столь ж е постоянно не выдавать никаких сигналов.
Рассмотрим далее ситуацию с тестированием исправной бомбы. В этом случае зеркало на бомбе перестает быть простым отражателем, а его сдвиг превращает саму бомбу в некоторое измерительное устройство, которое регистрирует одно из двух возможных событий (наличие или отсутствие падающего фотона). Если фотон проходит через полупрозрачное зеркало и попадает на зеркало детонатора, то событие регистрируется и... бомба взрывается с оглушительным «Ба-бах!!!». Тем самым мы определяем исправную бомбу, но, к сожалению, тут же теряем ее, так что нам не остается ничего иного, как установить на стенд следующую бомбу. Однако существует возможность, что при проведенном измерении (напоминаю, что измерительным прибором фактически является сама бомба) взрыва не произойдет из-за того, что фотон не попадет на зеркальце, а пройдет по другой траектории (именно эту ситуацию и обозначает термин «нуль-измерение»). В этом случае фотон попадает на второе полупрозрачное зеркало, где может быть с одинаковой вероятностью отражен или пропущен. В последнем случае он достигает точки В, где и регистрируется детектором. Таким образом, при тестировании исправной бомбы каждый случай регистрации фотона детектором В можно рассматривать как следующее событие: «бомба сработала в качестве измерительного устройства и выделила одну из двух возможных траекторий фотона». Существенно важным при этом является то, что испытываемая исправная бомба сама является измерительным устройством, участвует в процессе «компенсации» длин траекторий и позволяет зарегистрировать фотон в детекторе В даже без непосредственного взаимодействия с этим фотоном (это и есть нуль-измерение!). Ведь если фотон не прошел по одной из двух возможных траекторий, то он прошел по другой! Когда детектор В регистрирует поступление фотона, мы понимаем, что бомба сработала в качестве измерительного прибора и является исправной. Более того, каждая регистрация фотона детектором В, не сопровождающаяся взрывом, означает, что тестируемая бомба однозначно является исправной. Наша уверенность связана с тем, что фотон действительно прошел по другой траектории.