Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Математика » Математика. Поиск истины. - Морис Клайн

Математика. Поиск истины. - Морис Клайн

Читать онлайн Математика. Поиск истины. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 66 67 68 69 70 71 72 73 74 ... 80
Перейти на страницу:

Позиция, занятая физиками, должна напомнить нам о том, сколь значительная часть современной математики развилась из нашего непрестанного взаимодействия с окружающим физическим миром. Как отмечает Уильям Барретт в книге «Иллюзия техники» (1978), вся история математики свидетельствует о существовании взаимосвязи между математическим разумом и природой. Например, геометрия и математический анализ возникли в силу необходимости иметь дело с объектами и явлениями реального мира. Некоторые современные математики стремились ослабить связь своей науки с природой. Чрезмерное пристрастие к формализму привело их к убеждению, что математика — свободный экскурс в пустоту. Некоторые философы не без одобрения отнеслись к подобной тенденции. Вполне понятно, заявили они, что мы вряд ли могли бы строить самолеты или запускать ракеты без помощи математики. Однако не стоит, вырывая из контекста то или иное математическое утверждение, спрашивать, какому именно факту в реальном мире оно соответствует. Ясно, что на такого рода вопросы невозможно дать сколько-нибудь вразумительный ответ. Мы не должны выносить то или иное математическое утверждение за рамки математической языковой практики и в свою очередь рассматриваем последнюю как неотъемлемую часть нашего общего языка. Математика, как его функционирующая часть, служит для того, чтобы многое сообщать об объектах окружающего нас мира.

По утверждению Барретта, именно здесь лежит ключ к ответу на вопрос о конвенционализме. Принимаемые нами соглашения должны как-то «работать», т.е. помогать нам каким-то образом следовать природе, «подражать» ей. Можно было бы, например, принять решение изменить наши математические соглашения, исключив, скажем, понятие иррационального числа. Но оно необходимо в наших взаимоотношениях с природой, а именно природа в конечном счете служит мерилом нужности принимаемых нами соглашений, как математических, так и всех прочих.

Нам необходимо также понятие разума как продукта природы, связанного с ней в самых основах своего проявления. Математическим сущностям нет места во вневременном мире Платона, все они — творения человеческого разума, но творения, обретающие бытие лишь в своем взаимоотношении с природой, которая их окружает. Все человеческое мышление протекает на фоне природы. Эту мысль столь точно выразил Александр Поуп:

Природе следуй: лишь ее законВ суждениях прими за эталон.Во всей Природе заблуждений нет,Она неугасимый яркий свет.Всему она начало и конец:Науке, жизни, силы мера и венец.

Те правила, наследье старины,Открыты лишь, а не измышлены.А что они, как не сама Природа,Стесненная тенетами методы?

 То глас Природы, ей послушны мы.

Многие математики с готовностью соглашаются, что их наука находит необычайно широкое применение, но признают свою несостоятельность в объяснении этого феномена. Замечательная группа французских математиков, работавших под коллективным псевдонимом Никола Бурбаки, утверждала, что между экспериментальными явлениями и математическими структурами существует близкая взаимосвязь. Однако абсолютно неизвестно, какими причинами обусловлена эта взаимосвязь, и вряд ли мы когда-нибудь узнаем. В далеком прошлом математические закономерности выводили из твердо установленных экспериментальных истин, в частности непосредственно из интуитивного восприятия пространства. Однако квантовая физика показала, что эта макроскопическая интуиция реальности охватывает и микроскопические явления совершенно иной природы, связывая их с математикой, которая заведомо была создана не как приложение к экспериментальной науке. Следовательно, перед нами не что иное, как контакт двух дисциплин, реальные связи между которыми скрыты глубже, чем можно предполагать априори. Математику можно представлять как своего рода хранилище математических структур. Некоторые аспекты физической или эмпирической реальности удивительно точно соответствуют этим структурам, словно последние «подогнаны» под них.

Ту же неспособность объяснить взаимосвязь между математикой и реальностью мы встречаем в письме Шарля Эрмита к Лео Кёнигсбергеру (1837-1921):

Эти понятия анализа существуют самостоятельно вне нас, образуя единое целое, лишь часть которого беспрепятственно, хотя и несколько загадочно, открывается нам; это целое ассоциируется с другой совокупностью объектов, которые мы воспринимаем органами чувств.

([13], с. 397.)

Другие мыслители также вынуждены были признать, что необычайная эффективность математики необъяснима. Так, философ Чарлз Сандерс Пирс (1839-1914) заметил: «По-видимому, в этом есть какая-то тайна, которую еще предстоит раскрыть». Впоследствии Эрвин Шрёдингер в книге «Что такое жизнь с точки зрения физика?» признавал, что суть открытия человеком законов природы вполне может лежать за границами человеческого разума. Другой выдающийся физик Фримен Дайсон также считает, что «мы, по-видимому, еще не приблизились к пониманию взаимосвязи между физическим и математическим мирами». К словам названных ученых остается только добавить высказывание Эйнштейна: «Самое непостижимое в этом мире то, что он постижим». Однако Джеймс Джинс утверждает, что физические понятия и механизмы — не более чем гипотезы, выдвигаемые при построении математического описания реального мира. Но это означает, что все понятия, которыми оперирует физика, вряд ли представляют собой нечто большее, нежели фантазии. По мнению Джинса, математические уравнения — единственное, что нам достоверно известно о явлениях физического мира. Урожай, венчающий все усилия в физике, — лишь набор математических формул; реальная сущность материальной субстанции навсегда останется непознаваемой.

И все же роль математики в современной физике несравненно шире, чем просто удобного инструмента исследования. Под этой ролью часто понимают обобщение и систематизацию (в символах и формулах) явлений, наблюдаемых и устанавливаемых с помощью физического эксперимента, и последующее извлечение из формул дополнительной информации, не обнаруживаемой ни наблюдением, ни экспериментом и не вытекающей из непосредственно полученных данных. Но такое толкование роли математики далеко не исчерпывает всех ее достижений. Математика составляет сущность естественнонаучных теорий, и ее приложения в XIX-XX вв. на основе чисто математических конструкций представляются нам еще более удивительными, чем все ее прежние успехи, достигнутые в эпоху, когда математики оперировали понятиями, навеянными непосредственно физическими явлениями. Хотя было бы неверно приписывать одной лишь математике такие достижения современной науки, как радио, телевидение, самолет, телефон, телеграф, высококачественная звукозаписывающая аппаратура, рентгеновские лучи, транзисторы, атомная энергия (и, увы, атомная бомба), вклад математики более фундаментален и существен, чем вклад экспериментальной науки.

Независимо от того, сколь приемлемы приведенные выше объяснения эффективности математики, есть основания утверждать, что новая физика — наука не столько механическая, сколько математическая. Хотя Максвелл при создании теории электромагнитного поля пытался изобрести механическую модель эфира, в своем окончательном виде его теория была по существу математической; «физическая реальность», которую описывают уравнения Максвелла, представляет собой смутное, «бесплотное» понятие электромагнитного поля. Даже Ньютон построил свои законы движения как чисто математическую структуру.

Возможно, Эддингтон прав, и знанием математических соотношений и структур исчерпывается все, чем может нас порадовать физическая наука. Джинс добавляет, что математическое описание Вселенной и есть окончательная реальность. Используемые нами для большей наглядности картины и модели (очень модное ныне слово) — шаг в сторону от реальности. За пределы математических формул мы выходим на собственный страх и риск.

Поскольку математика — творение человека и с ее помощью мы открываем совершенно новые физические явления, люди создают отдельные части окружающего их мира: тяготение, электромагнитные волны, кванты энергии и т.д. Разумеется, математик работает не в пустоте, а руководствуется данными чувственного опыта и эксперимента. Существует некий субстрат физического факта, но даже там, где налицо какая-то физическая реальность, совершенная организация, полнота, уточнение и понимание достаются только с помощью математики.

Наше знание зависит от человеческого разума ничуть не меньше (если не больше), чем от реальностей окружающего мира. Разум влияет даже на чувственное восприятие. Восприятие дерева без сознания его «древесности» лишено смысла. Набор чувственных восприятий сам по себе лишен смысла. Люди с их разумом составляют часть реальности. Наука более не противопоставляет природу как объект исследования и человека как субъекта, занимающегося ее описанием. Объект и наблюдатель неразделимы.

1 ... 66 67 68 69 70 71 72 73 74 ... 80
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Поиск истины. - Морис Клайн торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит