Большая Советская энциклопедия (ГЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Для удобства анализа явлений наследования признаков Мендель ввёл буквенную символику. Гены доминантных признаков обозначаются заглавными буквами алфавита, рецессивных — строчными. Наследственную основу организма, константного в отношении какого-либо доминантного признака, можно обозначить формулой АА, генетическая формула организма с рецессивным признаком — аа. При скрещивании организмов АА´аа возникает гибридная форма, наследственную основу которой можно выразить формулой Аа. Буквы А и а обозначают соответственно гены, влияющие на развитие одного и того же признака, в данном примере — окраску семядолей. Организмы, несущие только гены, обусловливающие развитие доминантного (АА) или рецессивного (aa) признака, называются гомозиготными; организмы, несущие и те и другие гены (Aa), — гетерозиготными. Гены, занимающие одно и то же положение в гомологичных xpoмоcoмax и влияющие на развитие одних и тех же признаков, называют аллельными генами (см. Аллели). Явление расщепления признаков гибридных (гетерозиготных) организмов основано на том, что половые клетки (гаметы) гибридов несут только один из двух полученных ими от родителей аллельных генов (либо А, либо а). В этом состоит принцип чистоты гамет, отражающий дискретность структуры наследственного материала. Чистота гамет объясняется расхождением в мейозе гомологичных хромосом и локализованных в них аллельных генов в дочерние клетки, а числовые соотношения типов в потомстве от скрещивания гетерозиготных особей — равной вероятностью встречи гамет и заключённых в них генов при оплодотворении.
Если вести анализ только по одному признаку, то обнаруживаются два типа потомков: один — с доминантным, другой — с рецессивным признаком (в отношении 3:1); если же учесть генетическую структуру организмов, то можно различить уже три типа потомков: 1AA (гомозиготные по доминантному признаку), 1Aa (гетерозиготные), 1aa (гомозиготные по рецессивному признаку). Проведённый Менделем анализ наследования двух разных признаков (например, окраски семядолей и формы семян гороха) показал, что в потомстве гибридных (гетерозиготных) особей имеет место расщепление по обоим этим признакам, причём оба они комбинируются во втором поколении потомков независимо один от другого. Поскольку при расщеплении по каждому признаку возникают два типа потомков в отношении 3:1, то для случая двух независимо наследуемых признаков во втором поколении — четыре типа потомков в отношении: (3+ 1)´(3 +1)=9+3+3+1, т. е. 9/16 потомков с обоими доминантными признаками, 3/16 — с первым доминантным, вторым рецессивным, 3/16 — с первым рецессивным, вторым доминантным, 1/16 — с обоими рецессивными признаками. В случаях полного доминирования можно рассчитать соотношение типов потомков от скрещивания особей, различающихся по любому числу признаков, по формуле разложения бинома (3+1)n, где n — число пар генов, по которым различаются скрещиваемые родительские формы. Независимость наследования, т. е. свободное комбинирование, присуща тем признакам, за развитие которых отвечают гены, лежащие в разных (негомологичных) хромосомах. Т. о., причина независимого наследования — в независимом расхождении негомологичных хромосом в мейозе. Последующий детальный анализ закономерностей наследования показал, что совокупность признаков организма (фенотип) далеко не всегда соответствует комплексу его наследственных задатков генотипу), т. к. даже на одинаковой наследственной основе признаки могут развиваться по-разному под влиянием различных внешних условий. Наследственно-обусловленные признаки могут не проявиться в фенотипе либо в силу их рецессивности, либо под влиянием тех или др. факторов внешней среды. Если фенотип особи доступен непосредственному наблюдению, то о её генотипе с наибольшей полнотой можно судить на основе изучения потомков, полученных в определенных скрещиваниях. Индивидуальное развитие организмов и формирование их признаков осуществляются на основе генотипа в зависимости от условий окружающей внешней среды, одна из основополагающих теорий Г. — хромосомная теория наследственности. Краеугольное положение этой теории состоит в том, что за развитие определённых свойств и признаков организма ответственны строго локализованные участки — гены, расположенные в хромосомах в линейном порядке. Процесс удвоения хромосом обеспечивает также удвоение генов и передачу их в каждую вновь возникшую клетку. Гены, локализованные в пределах одной хромосомы, составляют одну группу сцепления и передаются совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов (см. Кариотип). Признаки, зависящие от сцепленных (т. е. расположенных в одной хромосоме) генов, также наследуются совместно. Сцепленное наследование признаков может нарушаться в результате кроссинговера, ведущего к перераспределению во время мейоза генетического материала между гомологичными хромосомами (см. Рекомбинация). Чем ближе друг к другу расположены гены, тем меньше вероятность их рекомбинации. На частоту рекомбинации влияют также пол особей, их физиологическое состояние, а также внешние условия (температура и др.). Частота рекомбинации может служить мерилом расстояния между генами. На этой основе разработаны методы определения положения генов в хромосоме и для ряда растений и животных составлены т. н. генетические карты хромосом. Для дрозофилы и кукурузы составлены также цитологические карты хромосом, на которых гены локализованы в определённых, видимых под микроскопом участках хромосом. Генетические и цитологические карты дополняют и подтверждают друг друга.
Доказано, что один ген может влиять не на один, а на многие признаки организма (плейотропия), вместе с тем развитие каждого признака зависит не от одного, а от многих генов (полимерия). Доказано также, что функции гена и его влияние на фенотип зависят от физического положения гена в генетической системе (эффект положения), от совокупности остальных генов (генотипической среды) и от внешних условий. Фенотипическое выражение гена — экспрессивность, так же как и его проявление — пенетрантность, т. е. наличие или отсутствие контролируемого данным геном признака, могут варьировать в зависимости как от внешних условий, так и от генотипа. Под влиянием различных внешних воздействий гены могут изменяться — мутировать. К независимому мутированию способны также элементарные единицы, входящие в состав гена. Все эти факты свидетельствуют о сложности материальной структуры гена, эволюционировавшей в процессе развития жизни на Земле, после того как были вскрыты молекулярные основы организации наследственных структур и процессов, которые лежат в основе передачи наследственной информации в клетке (и в организме) и в поколениях клеток (и организмов), выяснилось, что гены контролируют процессы синтеза белков в клетках и что генные мутации (изменения химической структуры генов) ведут к изменению химической структуры белков (что в ряде случаев сводится к замене одной аминокислоты другой). Материальным носителем генетической информации служит гигантский полимер — дезоксирибонуклеиновая кислота (ДНК), входящая в качестве важнейшего компонента в структуру хромосом всех организмов, за исключением некоторых вирусов, содержащих puбонуклеuновую кислоту (РНК).
При удвоении молекул ДНК в процессе клеточного деления дочерние молекулы при участии специфических ферментов строятся, как на шаблоне, на материнских молекулах и точно комплементарно воспроизводят их. «Записанный» в молекулярных структурах (последовательности нуклеотидов) ДНК генетический код определяет порядок расположения аминокислот в белковой молекуле. Передача информации с ДНК на синтезируемые белки осуществляется при помощи РНК. Молекулы РНК строятся на основе ДНК и комплементарны ей; вследствие этого кодирующая структура ДНК воспроизводится в молекулах РНК (см. Комплементарность). В клетке имеется несколько типов РНК: информационная (и-РНК), транспортная (т-РНК), рибосомная (р-РНК). Они различаются по величине молекул, структуре и функции. Порядок расположения аминокислот в белковых молекулах контролируется высокополимерной и-РНК; биосинтез белка происходит в цитоплазматических рибонуклеопротеидных (белок+р-РНК) структурах — рибосомах — при помощи ферментов — аминоацил-р-РНК-синтетаз и энергии аденозинтрифосфата (АТФ), запасаемой в митохондриях. Транспортировка аминокислот к рибосомам осуществляется с помощью сравнительно низкополимерной т-РНК. Структура и-РНК определяет место и порядок расположения аминокислот в молекулах белка — первичную структуру белковых молекул и их основные свойства. Ген, т. е. участок молекулы ДНК, контролирующий синтез полипептидных цепей того или иного белка, называется структурным геном. У ряда микроорганизмов (кишечная палочка, сальмонелла), а также у фагов хорошо изучены структура и функции многих структурных генов (цистронов): установлено, что структурные гены, контролирующие синтез ферментов определённой последовательности реакций, сцеплены в блоки (опероны). Имеются структуры (т. н. операторы), «включающие» синтез и-РНК структурными генами. Операторы, в свою очередь, находятся под контролем генов-регуляторов. Т. о., гены составляют сложную систему, обеспечивающую строгое согласование процессов биосинтеза в клетке и в организме в целом. В клетках в функционально активном состоянии находится лишь часть генов; активность остальных подавлена, репрессирована. В связи с закономерной сменой состояний активности генов и их депрессии меняется и спектр синтезируемых в клетке белков. Так, у человеческого плода синтезируется гемоглобин эмбрионального типа; лишь к 1 году у ребёнка гемоглобин эмбрионального типа постепенно замещается нормальным гемоглобином взрослого человека, Динамику активного и репрессированного состояний генетического аппарата удалось наблюдать и непосредственно — с помощью микроскопических и цитохимических методов — на гигантских хромосомах в клетках слюнных желёз личинок некоторых двукрылых (дрозофила, хирономус). Для каждой стадии развития организма характерна строго определённая картина синтетической активности хромосом: некоторые участки их находятся в состоянии сильной активности и синтезируют РНК, тогда как др. участки на этих стадиях развития функционально не активны, но становятся активными на др. стадиях. Оказалось, что в ряде случаев регуляторами функциональной активности генетическиого аппарата являются гормоны. Проблема генетических аспектов онтогенеза — одна из наиболее актуальных в современной биологии.