Хаос. Создание новой науки - Джеймс Глейк
Шрифт:
Интервал:
Закладка:
Будь система сложней, можно было бы прибегнуть к графической интерпретации, например устанавливающей связь между изменениями температуры или скорости, с одной стороны, и временем — с другой. Но подтекающий кран дает лишь последовательность временных периодов, поэтому Шоу попробовал применить технику, ставшую, пожалуй, наиболее ценным и значительным вкладом его группы в исследование хаоса. Она заключалась в реконструкции фазового пространства для невидимого странного аттрактора и подходила для любой последовательности данных. Чтобы отобразить информацию о подтекающем кране, Шоу начертил двухмерный график. По оси x он отмечал временные интервалы между падением первой и второй капель, а по оси y — второй и третьей и т. д. Если между падением двух капель проходило 150 миллисекунд и еще столько же времени разделяло падение второй и третьей капель, он наносил на график точку с координатами (150; 150).
И в этом заключалось все! Если утечка воды была регулярной (такое, как правило, случалось, когда вода текла медленно, а сама система находилась в «режиме водяных часов»), график выглядел довольно скучным. Точки попадали на одно и то же место, накладываясь друг на друга. Изображение сводилось к одной-единственной точке или почти к одной. В действительности же существовали различия между виртуальным и реальным кранами. Прежде всего на реальный кран влияли помехи. «Выяснилось, что эта штука — отличный сейсмометр, — комментировал Шоу, — весьма эффективный в усилении малых шумов». Большую часть работы исследователь проделывал по ночам, когда коридоры пустели. Шумы превращали точку, полученную теоретически, в слегка расплывчатое маленькое облако.
По мере роста скорости течения жидкости система проходила через удваивающие период бифуркации. Капли падали парами: один интервал составлял 150 миллисекунд, а следующий — уже 80. На графике возникали сразу две туманные области: одна с центром в точке (150; 80), а другая — с координатами (80; 150). Но истинный критерий проявился, когда система стала хаотической. Будь она по-настоящему беспорядочной, точки разбросало бы по всему графику и между двумя соседними интервалами не обнаруживалось бы связи. Но если в результатах опыта был скрыт странный аттрактор, он обнаружил бы себя намеком на структуру.
Зачастую, чтобы разглядеть структуру, необходимо трехмерное пространство, но это не представлялось сложным — описанная техника вполне поддавалась модификации для построения групп с большим числом измерений: вместо того чтобы отмечать на графике интервал n рядом с интервалом n+1, можно было отметить интервал n рядом с интервалом n+1 и рядом с интервалом n+2.
Это ухищрение как бы приравнивало три переменных к одной. Ученые верили, что порядок коренится в очевидной случайности и так или иначе даст о себе знать экспериментаторам. Проявится, даже если они не имеют представления, какие физические переменные следует измерять, или просто не могут определить их. Фармер пояснял: «Размышляя о той или иной переменной, нужно иметь в виду, что на ее эволюцию влияют любые взаимодействующие с ней переменные. Их значения так или иначе должны отразиться в истории ее развития. Каким-то образом они просто обязаны оставить в ней свой след». Картины, полученные Шоу для подтекающего крана, наглядно иллюстрировали данное утверждение. На них, скажем, появлялись объекты (особенно в трех измерениях), подобные петлям дыма, какие оставляет на небе неуправляемый самолет. Теперь Шоу мог сопоставить две диаграммы — экспериментальную и выданную аналоговым компьютером. Реальные данные всегда оказывались менее ясными, как бы «смазанными» внешними помехами, и все-таки структура просматривалась — в этом нельзя было ошибиться. Группа динамических систем начала сотрудничать с такими опытными экспериментаторами, как Гарри Суинни, который перешел в Техасский университет, в Остине. Вскоре молодые исследователи научились устанавливать странные аттракторы для всех типов систем путем внедрения информации в фазовое пространство с достаточным числом измерений. Затем Флорис Такенс предложил математическое обоснование этой весьма эффективной техники воссоздания фазового пространства аттрактора из потока реальных данных. Как позже обнаружили многие ученые, данная методика выявляет различие между тривиальными помехами и хаосом, но в не известном ранее смысле, как упорядоченный беспорядок, созданный элементарными процессами. Информация, которая на самом деле случайна, остается произвольно «разбросанной», а хаос — детерминистский и созданный по некоему образцу — стягивает данные в видимые формы. Из всех возможных путей беспорядка природа благоволит лишь к немногим.
Переход от бунта к благочинной физике оказался небыстрым. Время от времени, сидя в кафе или работая в лаборатории, тот или другой член группы изумлялся, что научным фантазиям не положен предел. «Господи, мы все еще занимаемся этим, и сие все еще имеет смысл! — изумлялся Джим Кручфилд. — Мы все еще здесь. Но как далеко зайдем?»
Основную поддержку группе оказывали Ральф Абрахам, протеже Смэйла с математического факультета, и Билл Бёрк с факультета физики, который собственноручно собрал вычислительную машину — «царя аналоговых компьютеров», чтобы группа могла заявить свои притязания хотя бы на эту часть факультетского оборудования. Отношение остальных было куда сложнее. Несколько лет спустя некоторые профессора резко отрицали, что группе приходилось сталкиваться с безразличием или враждебностью со стороны факультета. Сами молодые ученые столь же ожесточенно реагировали на попытки задним числом пересмотреть роль запоздалых неофитов хаоса. «У нас не было научного руководителя, и никто не говорил нам, что надо делать, — заявил Шоу. — Мы сами годами играли роль консультантов, и это продолжается по сей день. В Санта-Крусе наши исследования никогда не финансировались, и каждый из нас довольно долгое время работал бесплатно. Мы постоянно были стеснены в средствах, не имели ни интеллектуального, ни какого-либо иного руководства».
С точки зрения другой стороны, факультет долго мирился с исследованиями, которые отнюдь не обещали вылиться во что-либо существенное, и даже содействовал им. Руководитель Шоу продолжал выплачивать ему стипендию еще год после того, как его протеже оставил физику низких температур. Никто не запрещал исследований хаоса. В худшем случае факультет был обескуражен, но сохранял благожелательность. Каждого из членов группы время от времени увещевали с глазу на глаз, что если капризы имеющих докторскую степень еще можно как-то оправдать, то аспирантам никто не поможет найти работу по несуществующей специальности. На факультете им втолковывали, что они переживают лишь мимолетное увлечение, но что будет потом? Однако за пределами лесистого холма хаос уже обретал ярых сторонников, и Группа динамических систем должна была присоединиться к ним.
Однажды университет посетил Митчелл Файгенбаум, заехавший туда во время своего лекционного турне, которое призвано было ознакомить ученых с прорывом в область всеобщности. Как всегда, его выступления являли собой малопонятные экскурсы в математику. Теория групп перенормировки представлялась неким эзотерическим элементом физики твердого тела, которую аспиранты Санта-Круса не изучали. Кроме того, молодых физиков больше интересовали реальные системы, нежели простые одномерные модели. Тем временем Дойн Фармер, прослышав, что математик Оскар Е. Ленфорд-третий занимается исследованиями хаоса в университете Беркли, отправился на встречу с ним. Ленфорд, вежливо выслушав гостя, заявил, что обсуждать им нечего. Он пытался разобраться с теориями Файгенбаума.
«Господи! Где его чувство масштаба? — думал Фармер. — Он кружится по крохотной орбите, а мы между тем изучаем теорию информации, которая столь глубока. Разбираем хаос на части, чтобы увидеть, что двигает им. Пытаемся связать метрическую энтропию и показатели Ляпунова с более привычными статистике мерами…»
При встрече с Фармером Ленфорд не подчеркивал значения всеобщности, и только позже до молодого физика дошло, что собеседник просто обошел данный вопрос. «Я был наивен, — признавался Фармер. — Сама идея универсальности стала огромным достижением. Сделанное Файгенбаумом задало работу целой армии ученых, занятых разного рода критическими явлениями.
Раньше представлялось, что нелинейные системы необходимо рассматривать последовательно. Мы пытались подобрать нужный язык, чтобы описать их, охарактеризовать количественно. Большинству, однако, казалось, что нужно применять именно последовательный подход. Мы не видели способа классифицировать системы и найти решения, подходящие для целого класса объектов, как делается в отношении систем линейных. Всеобщность позволяла вскрыть свойства, идентичные для всех явлений данного класса, т. е. предсказуемых характеристик. Вот почему она была по-настоящему важной.