Хаос. Создание новой науки - Джеймс Глейк
Шрифт:
Интервал:
Закладка:
В той степени, в какой термин «информация» обозначает непредсказуемость, данная теория соответствовала идеям, которые развивали Руэлль и другие ученые. Обращение к теории информации позволило группе из Санта-Круса использовать ту часть математической аргументации, которая была хорошо отработана теоретиками в сфере коммуникации. В частности, проблема добавления внешних помех в детерминистскую систему представлялась для динамики новой, но в области коммуникации с ней были уже хорошо знакомы. Молодых ученых, впрочем, математика привлекла лишь отчасти. Когда они обсуждали системы, генерирующие информацию, то размышляли и о спонтанном зарождении некоего образа в мире. Паккард замечал: «Кульминацией сложной динамики являются биологическая эволюция и процессы мышления. Интуиция подсказывает, что существует четкий принцип, с помощью которого эти сверхсложные системы генерируют данные. Миллиарды лет назад существовали лишь частицы протоплазмы, затем появились все мы. Итак, информация создавалась и хранилась в нашей собственной структуре. Несомненно, что в ходе развития разума человека, начиная еще с детства, информация не только аккумулируется, но и порождается из тех связей, которых ранее не существовало». Такого рода разговоры могли вскружить голову даже здравомыслящему ученому-физику.
Члены нашей четверки были прежде всего экспериментаторами-жестянщиками, а уж потом философами. В их ли силах было перекинуть «мостик» от странных аттракторов, которые они столь хорошо знали, к опытам классической физики? Утверждать, что «направо — налево — направо — направо — налево — направо — налево — налево — налево — направо» обладает свойством непредсказуемости и способностью генерировать информацию, — это одно, а, взяв поток реальной информации, определить присущие ему показатели Ляпунова, энтропию и размерность — совсем другое. Но все же молодые физики из Санта-Круса чувствовали себя в окружении подобных идей куда более свободно, нежели их старшие коллеги. Они жили мыслями о странных аттракторах днем и ночью, убедив себя в том, что наблюдают их в развевающихся, сотрясающихся, пульсирующих и качающихся объектах повседневной жизни.
Сидя в кафе, они забавлялись тем, что спрашивали: далеко ли отсюда находится ближайший странный аттрактор? Уж не то ли это дребезжащее автомобильное крыло? Или флаг, трепещущий от легкого ветерка? Дрожащий лист на ветке? «Вы не увидите объект до тех пор, пока верно выбранная метафора не позволит воспринять его», — замечал Шоу, вторя Томасу С. Куну. Вскоре их друг Билл Бёрк, занимавшийся теорией относительности, окончательно убедился, что спидометр его машины работает в свойственной странному аттрактору нелинейной манере. Шоу, приступая к экспериментальному проекту, который займет его на ближайшие несколько лет, выбрал самую простую динамическую систему, какую только мог себе представить физик, — подтекающий кран. Большинство людей полагают, что в поведении этой системы непременно обнаруживается периодичность, но, как свидетельствуют эксперименты, это не совсем верно. «Перед нами простой пример системы, которая переходит от периодичного поведения к непериодичному, — объяснял Шоу. — Если немного приоткрыть кран, дробь капель станет беспорядочной. Как выясняется, по прошествии небольшого периода времени ее уже нельзя предугадать. Таким образом, даже нечто простое, вроде водопроводного крана, может считаться вечно созидающим информацию объектом».
Казалось бы, о чем тут думать? Подтекающий кран порождает лишь капли, каждая из которых почти повторяет собой предыдущую. Однако для новоиспеченного исследователя хаоса этот объект заключает в себе два преимущества: во-первых, всякий мог его представить; во-вторых, поток информации одномерен настолько, насколько это возможно: ритмичная барабанная дробь отдельных капель измеряется во времени. Ни одним из перечисленных достоинств не обладали системы, которые позже изучались группой. Не были они присущи ни иммунной системе человека, ни сталкивающимся пучкам, которые необъяснимым образом снижали коэффициент полезного действия линейного ускорителя в Стэнфорде. Ученые-экспериментаторы вроде Либхабера и Суинни получали одномерный поток информации путем произвольного закрепления детектора в одной из точек чуть более сложной системы. В подтекающем кране единственная линия данных представляет собой все, что имеется в наличии. Это даже не постоянно меняющаяся вязкость или температура — это всего лишь момент падения капли.
Если физик-традиционалист попробует подступиться к такой системе, он, вероятно, начнет с того, что создаст максимально законченную ее модель. Процессы, управляющие формированием и падением капель, вполне понятны, хотя и не столь просты, как может показаться. Одним из немаловажных параметров является скорость течения жидкости. (Она была невысокой в сравнении со скоростью большинства гидродинамических систем. В эксперименте Шоу частота падения капель составляла от 1 до 10 в секунду, что соответствовало скорости течения жидкости из крана от 30 до 300 галлонов в две недели.) К другим параметрам относятся вязкость жидкости и поверхностное трение. Капля воды, висящая на кончике крана и готовая вот-вот сорваться вниз, принимает сложную трехмерную форму. Один только расчет ее конфигурации был, по выражению Шоу, «сродни высокому искусству». К тому же указанная форма далеко не статична. Капля подобна небольшому эластичному мешочку, обладающему поверхностным натяжением. Качаясь туда-сюда, он набирает массу и растягивается до тех пор, пока не минует критическую точку и не упадет. Если физик попробует построить полную модель падения капель, составит дифференциальные уравнения с подходящими граничными условиями и попытается затем решить их, он обнаружит, что оказался в непроходимом лесу.
Альтернативный подход к проблеме заключается в том, чтобы, забыв о физике, рассматривать только информацию — так, будто она исходит из некоего «черного ящика». Но что может сказать эксперт по динамике хаоса, имея перечень чисел, интервалов между падением отдельных капель? Как выяснилось, кое-какие методы анализа таких данных имелись и могли прояснить некие детали физической картины, что, собственно, стало решающим в деле применения хаоса к задачам реального мира.
Но Шоу, отвергнув крайности, начал с золотой середины. Он создал своеобразную пародию на завершенную физическую модель. Не принимая во внимание ни форму капель, ни их сложные движения в трех измерениях, он лишь грубо смоделировал падение капель — уподобил их грузу, который висит на равномерно удлиняющейся пружине. По мере возрастания веса пружина растягивается, и груз опускается все ниже. По достижении определенной точки часть груза, отломившись, отделяется. Какая именно часть отделится, по предположению Шоу, будет зависеть непосредственно от скорости падения груза в точке отрыва.
Потом, естественно, пружина с остатком груза подскочит вверх, производя те самые колебания, которые аспиранты при построении моделей описывают с помощью стандартных уравнений. Интересное свойство системы — единственное интересное свойство, определяющее нелинейный изгиб, который делает возможным хаотичное поведение, — заключалось в том, что момент отрыва следующей капли зависел от взаимодействия колебаний пружины с увеличением веса груза. Скачок вниз, вероятно, помогал грузу достичь точки отрыва гораздо быстрее, а движение вверх слегка замедляло этот процесс. В реальности не все капли, образуемые подтекающим водопроводным краном, имеют одинаковый размер. Он меняется в зависимости от скорости течения, а также от сжатия или растяжения «пружины». Если капля рождается при движении вниз, она срывается быстрее, в противном случае она сможет вобрать в себя немного больше жидкости, прежде чем упадет. Сконструированная Шоу модель была достаточно «примитивной», чтобы ее удалось описать тремя дифференциальными уравнениями — минимально необходимым для моделирования хаоса количеством, как наглядно продемонстрировали Лоренц и Пуанкаре. Но позволяла ли она генерировать сложность, равнозначную реальной? И являлась ли сия сложность хаотической?
Итак, Шоу сидел в лаборатории физического факультета. Над его головой располагалась большая пластмассовая емкость, от которой отходила трубка, спускавшаяся к латунной насадке. Капля, падая, пересекала луч света, фиксируемый фотоэлементом. Компьютер в соседней комнате регистрировал время совершения этого события. Одновременно Шоу ввел в аналоговый вычислитель три своих уравнения, которые начали генерировать поток модельных данных. Однажды он устроил на факультете демонстрацию — псевдоколлоквиум, по выражению Кручфилда (аспирантам не разрешалось устраивать официальные коллоквиумы). Шоу проиграл пленку с записью того, как капли выстукивают дробь на куске жестянки, и с помощью компьютера воспроизвел щелчки — аудиомодель падения капель. Он подошел к решению проблемы сразу с двух сторон, и слушатели смогли уловить некую структуру в неупорядоченной вроде бы системе. Но для дальнейшего продвижения вперед был нужен способ извлечения необработанных данных из любого эксперимента и возвращения к уравнениям и странным аттракторам, характеризующим хаос.