Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Теория струн и скрытые измерения Вселенной - Шинтан Яу

Теория струн и скрытые измерения Вселенной - Шинтан Яу

Читать онлайн Теория струн и скрытые измерения Вселенной - Шинтан Яу

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 46 47 48 49 50 51 52 53 54 ... 104
Перейти на страницу:

Иными словами, преобразование, отвечающее вращательной симметрии, изменило топологию многообразия Калаби-Яу, оставив неизменной сопутствующую ей конформную теорию поля. В результате теперь двум многообразиям Калаби-Яу с совершенно различной топологией можно было сопоставить одну и ту же физическую теорию. «Это, коротко говоря, и называется зеркальной симметрией», — поясняет Гепнер.[97] Используя более общее понятие, можно также определить это свойство как дуальность, смысл которой состоит в том, что два объекта, с виду не имеющие отношения друг к другу, в данном случае — два многообразия Калаби-Яу, тем не менее порождают одну и ту же физику.

Первая статья Грина и Плессера по теме зеркальной симметрии описывала десять так называемых зеркальных партнеров, или зеркальных многообразий, обнаруженных среди нетривиальных и не являющихся совершенно плоскими многообразий Калаби-Яу, начиная с простейшего случая — трехмерной поверхности пятого порядка. Наряду с еще девятью примерами в этой статье содержалась формула, дающая возможность получить зеркальные пары для любой модели Гепнера, — на сегодня число подобных пар составляет сотни, если не тысячи.[98]

Зеркальные многообразия имеют ряд интереснейших свойств, проявляющихся при сопоставлении объектов, которые ранее казались не имеющими отношения друг к другу. К примеру, Грин и Плессер обнаружили, что одно из многообразий Калаби-Яу может иметь 101 вариант формы и только один вариант размера; зеркальное же многообразие, напротив, будет иметь 101 вариант размера и единственный вариант формы. Многообразия Калаби-Яу могут иметь дырки различной размерности — как нечетной, так и четной. Грину и Плессеру удалось обнаружить любопытное взаимоотношение между зеркальными парами: число дырок нечетной размерности в многообразии равно числу дырок четной размерности в его зеркальном партнере, и наоборот. «Это означает, что общее число дырок… в обоих многообразиях одинаково, даже несмотря на то, что замена дырок четной размерности на дырки нечетной размерности приводит к совершенно различным формам и геометрическим структурам», — замечает Грин.[99]

Рис. 7.1. Брайан Грин (© Андреа Кросса)

Рис. 7.2. Ронен Плессер (Duke Photography)

Рис. 7.3. Двойной тетраэдр, имеющий пять вершин и шесть граней, и треугольная призма, имеющая шесть вершин и пять граней, являются простыми примерами зеркальных многообразий. Эти привычные всем многогранники, в свою очередь, можно использовать для создания многообразия Калаби-Яу и его зеркальной пары, причем число вершин и граней многогранника будет определять внутреннюю структуру соответствующего многообразия Калаби-Яу. Подробности процедуры «конструирования» многообразия носят скорее технический характер, выходящий за рамки этого обсуждения

Это еще не объясняет «зеркальный» аспект обнаруженной симметрии, который проще проиллюстрировать при помощи топологии. Было установлено, например, что многообразия Калаби-Яу и их зеркальные партнеры имеют эйлеровы характеристики противоположных знаков, что говорит о существенном различии в их топологиях, хотя и несколько опосредованно, поскольку эти числа сами по себе дают только незначительную часть информации о пространстве и, как уже было показано ранее, многие пространства, заметно отличающиеся друг от друга, такие как куб, тетраэдр и сфера, могут иметь одинаковые эйлеровы характеристики. Можно показать это и более строго, представив эйлеровы характеристики в виде сумм и разностей целых чисел, называемых числами Бетти, которые содержат более полную информацию о внутренней структуре пространства.

Любой объект имеет n + 1 чисел Бетти, где n — размерность объекта. Таким образом, нульмерная точка имеет одно число Бетти; одномерная окружность — два числа Бетти; двухмерная поверхность, например сфера, — три числа Бетти и т. д. Первое число Бетти обозначается как b1 второе — как b2 и последнее — как bk где к-е число Бетти представляет собой количество независимых k-мерных циклов, или петель, которые могут быть обернуты вокруг пространства или многообразия или пропущены через рассматриваемое пространство или многообразие. Подробнее о циклах будет рассказано далее.

Рис. 7.4. Поверхности (речь идет об ориентируемых или двухсторонних поверхностях) можно различать топологически, сравнивая их числа Бетти. В целом число Бетти означает число способов, которыми можно провести разрез на двухмерной поверхности, не приводящих к образованию двух отдельных частей. Для сферы подобный разрез невозможен, поэтому ее число Бетти равно нулю. С другой стороны, бублик возможно разрезать двумя различными способами, не разделив его на две отдельные части, как показано на рисунке. Поэтому его число Бетти равно двум

В случае двухмерных поверхностей первое число Бетти описывает число возможных разрезов, которые не приводят к разделению объекта на два. Если взять поверхность сферы, являющуюся двухмерным пространством, то очевидно, что разрезать ее, не разделив на две части, невозможно. Это равносильно утверждению о том, что для сферы первое число Бетти равно нулю.

Рассмотрим теперь полый бублик. Проведя разрез вокруг бублика вдоль его «экватора», вы все равно получите цельный объект, хотя и вывернутый наизнанку. Аналогично, если разрез пройдет через дырку бублика, его цельность снова останется неприкосновенной, хотя внешний вид сильно пострадает. Поскольку существует только два способа разрезать бублик и ни один из них не приводит к образованию двух частей, можно утверждать, что его первое число Бетти равно двум.

Рис. 7.5. Матрица чисел размером 4×4, известная как ромб Ходжа, содержит в себе подробную топологическую информацию о многообразии Калаби-Яу, имеющем три комплексных измерения. Хотя многообразие Калаби-Яу нельзя однозначно охарактеризовать ромбом Ходжа, многообразия с различными ромбами Ходжа топологически различны. Ромбы Ходжа, приведенные на рисунке, являются зеркальными отображениями друг друга и соответствуют многообразию Калаби-Яу и его зеркальному партнеру

Теперь рассмотрим крендель с двумя дырками. Можно провести замкнутый разрез по внутренней поверхности каждой из его дырок или провести разрез по перемычке, соединяющей дырки, или же сделать разрез вдоль его внешнего края — крендель все равно останется объектом. Таким образом, существуют четыре способа разрезать крендель с двумя дырками, ни один из которых не приведет к возникновению двух отдельных частей, следовательно, его первое число Бетти равно четырем. А для кренделя с 18 дырками первое число Бетти равно 36.

Можно, однако, получить и более точное описание топологии различных многообразий. Каждое из чисел Бетти представляет собой сумму чисел, называемых числами Ходжа, открытыми шотландским математиком В. В. Д. Ходжом. Эти числа позволяют более пристально взглянуть на подструктуру пространства. Информация о ней содержится в так называемом ромбе Ходжа.

Ромбы Ходжа позволяют нам представить себе «зеркало» в зеркальной симметрии. Таблица из шестнадцати чисел соответствует определенному шестимерному многообразию Калаби-Яу, которое мы обозначим как М. Чтобы получить ромб Ходжа для зеркального многообразия М', нужно нарисовать прямую, проходящую через середины левой нижней и правой верхней сторон. После этого необходимо перевернуть числа Ходжа относительно этой прямой. Модифицированный ромб Ходжа, характеризующий многообразие, является зеркальным партнером исходного, буквально отражением или зеркальным отображением оригинала.

Тот факт, что числа Ходжа для многообразия и его зеркального партнера симметричны относительно диагонали, является следствием, а не объяснением зеркальной симметрии, поскольку это возможно и для двух многообразий, не являющихся зеркальными парами. Взаимосвязь между числами Ходжа для различных многообразий, обнаруженная Грином и Плессером, была не доказательством, а лишь намеком на то, что им удалось обнаружить новое проявление симметрии. Намного более убедительным, по словам Плессера, стало то, что им удалось обнаружить «полную идентичность» физики (или конформных теорий поля) многообразий, являющихся зеркальными парами.[100]

Независимое подтверждение идей Грина и Плессера появилось в том же 1989-м, через несколько дней после того, как они отправили свою статью в печать. Как сообщил Грину Канделас, ему и двум его студентам удалось, перебрав большое количество рассчитанных на компьютере многообразий Калаби-Яу, обнаружить весьма интересную особенность. Они заметили, что эти многообразия образуют пары, в которых число дырок четной размерности для одного многообразия совпадало с числом дырок нечетной размерности для второго. Обнаруженный обмен числом дырок, количеством возможных форм и размеров и числами Ходжа между двумя многообразиями весьма заинтриговал исследователей, хотя и мог быть просто математическим совпадением. По словам Грина, «вполне возможно, что их связь имела такое же отношение к физике, как связь между магазином, в котором молоко продают по доллару, а сок — по два, и магазином, в котором сок стоит два доллара, а молоко — один. Точку в этом вопросе поставило доказательство, найденное мной и Плессером, которым мы показали, что различные пары многообразий Калаби-Яу приводят к одинаковой физике. Это и стало подлинным определением явления зеркальной симметрии — из которого уже проистекали все прочие следствия, — и это гораздо больше, чем простая перестановка двух чисел».[101]

1 ... 46 47 48 49 50 51 52 53 54 ... 104
Перейти на страницу:
На этой странице вы можете бесплатно скачать Теория струн и скрытые измерения Вселенной - Шинтан Яу торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит