Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк
Шрифт:
Интервал:
Закладка:
Оглядываясь назад, я могу сказать, что самым уморительным повторением был не этот первый случай, а тот, который произошел в 1995 году, когда я изобрел метод измерения квантового состояния (волновой функции матрицы плотности) частицы. Никогда не забуду: я уже собирался подавать статью, когда наткнулся на чужую опубликованную работу, и вечером как идиот стоял в опустевшей библиотеке, глядя в журнал. Эти ребята не только опередили меня, но и подготовили тщательно проработанный, понятный рисунок, почти идентичный моему графику, и предложили для своего метода в точности то же туманное название, которое придумал я – томография фазового пространства. Все, что я мог сделать – это воскликнуть: «ХУРФ!» – особое слово, выдуманное мной вместе с братом Пером. Оно идеально соответствовало моменту.
В конце концов я встретился со многими из этих ужасных анонимных конкурентов и нашел, что они по-настоящему замечательные люди. Це и Зурек прислали мне одобрительные письма о моей работе и пригласили выступить с докладом. В 2004 году я побывал у Войцеха Зурека в Лос-Аламосе и открыл одну из самых замечательных привилегий ученого: вас приглашают посетить экзотические места, где вы проводите все время в общении с замечательными людьми – и это называется работой! И вам даже оплачивают эти поездки! У Зурека пышная шевелюра и озорные огоньки в глазах, выдающие его пристрастие к приключениям как в науке, так и в развлечениях. Однажды он убедил меня залезть под скалу, нависающую над закрытым участком рядом с огромным исландским водопадом Гюдльфосс, и пройти в метре от падающей воды, когда поток вдруг поменял направление, и я не знаю, сколько параллельных вселенных потеряли двух теоретиков декогеренции. Когда я посетил Це и его группу в Гейдельберге в 1996 году, то удивился, как мало почестей ему воздали за колоссальной значимости открытие декогеренции. Его ворчливые коллеги с физического факультета Гейдельбергского университета в основном отвергали его работу как слишком философскую, несмотря на то, что факультет расположен на Философской улице. Собрания его группы были перенесены в здание церкви, и меня поразило, что единственным источником средств, который он нашел для поддержки написания самой первой книги о декогеренции, стала лютеранская церковь.
Это привело меня к убеждению, что Хью Эверетт не был исключением: изучение оснований физики – это вовсе не способ прославиться. Это больше похоже на искусство: лучшая причина для таких занятий – если вы их любите. Лишь немногие из моих коллег физиков решили работать над по-настоящему большими вопросами, и когда я встречаюсь с ними, то чувствую подлинное родство душ. Я представляю их группой друзей, которые отказались от доходной карьеры, чтобы стать поэтами, способными чувствовать подобные связи, зная, что все они занимаются этим не ради денег, а в качестве интеллектуального приключения.
Всякий раз, когда попутчик в самолете задает мне вопросы о науке, я припоминаю правильный способ думать о соревновании и возможности оказаться обойденным. Здесь, в кресле самолета, я – посол страны Физики, и для меня радость и гордость состоит в описании не того, что сделал я лично, но того, что сделали мы, физики, сообща. Иногда я опережаю коллег, чаще они опережают меня, но главное то, что мы учимся друг у друга, вдохновляем друг друга и достигаем большего, чем по силам одному человеку даже в самых буйных фантазиях. Это удивительное сообщество, и я невероятно счастлив быть в его составе.
Почему ваш мозг – не квантовый компьютер
«Сэр Роджер Пенроуз некогерентен[46], и Макс Тегмарк утверждает, что может это доказать». Ничего себе! Я прочел первую строчку заметки в журнале «Сайенс» от 4 февраля 2000 года и почувствовал, что меня застали врасплох. Я никогда не называл знаменитого математического физика некогерентным, но журналистам по душе скандалы и каламбуры, а я написал статью (http://arxiv.org/pdf/gr-qc/9310032.pdf), в которой показал, что одна из идей Пенроуза неверна из-за декогеренции.
В последние годы наблюдается всплеск интереса к квантовым компьютерам, которые могли бы использовать причуды квантовой механики для ускоренного решения некоторых задач. Допустим, вы купили эту книгу в интернет-магазине. Номер вашей кредитной карты был зашифрован методом, который основан на том факте, что перемножение двух 300-значных простых чисел делается быстро, а разложение на множители получившегося 600-значного числа осуществить трудно, и с лучшими современными компьютерами это заняло бы времени больше, чем возраст нашей Вселенной. Если удастся построить большой квантовый компьютер, хакеры смогут с помощью квантового алгоритма, изобретенного моим коллегой по Массачусетскому технологическому институту Питером Шором, очень быстро найти ответ и украсть ваши деньги. Как утверждает пионер квантовых вычислений Дэвид Дойч, «квантовые компьютеры распределяют информацию по огромному числу версий самих себя в мультиверсе» и могут быстрее получить ответ здесь, в нашей Вселенной, в известном смысле, получая помощь от тех, других версий. Квантовый компьютер может также эффективно моделировать поведение атомов и молекул, заменяя измерения в химических лабораториях таким же образом, как моделирование на обычных компьютерах заменило измерения в аэродинамических трубах. Многие современные компьютеры действуют быстрее за счет параллельной работы множества процессов. О квантовом компьютере можно думать как об идеальном параллельном компьютере, использующем мультиверс III уровня в качестве вычислительного ресурса и, в некотором смысле, запускающем параллельные вычисления в параллельных вселенных.
Прежде чем строить такую машину, надо справиться с огромными инженерными проблемами, такими как достаточно надежная изоляция квантовой информации, чтобы декогеренция не разрушала квантовые суперпозиции. Здесь еще предстоит сделать очень многое: в то время как компьютер в сотовом телефоне хранит, вероятно, миллиарды битов информации (нулей и единиц), самые совершенные квантовые компьютеры в лабораториях мира могут хранить лишь по несколько штук. Однако Пенроуз и другие выдвинули шокирующее предположение: возможно, у вас уже есть квантовый компьютер – в голове! Они предположили, что наши мозги (по крайней мере некоторые) являются квантовыми компьютерами и что это ключевой момент для понимания природы сознания.
Поскольку декогеренция нарушает квантовые эффекты, я решил применить те самые формулы для декогеренции, с которыми меня опередили, для проверки идеи Пенроуза. Сначала я выполнил расчеты для нейронов (рис. 8.7), нервных клеток, которые, подобно проводам, передают электрические сигналы в мозге. Нейроны тонкие и длинные: если вы выложите свои нейроны один за другим, они обогнут Землю около 4 раз. Нейроны передают электрические сигналы, перемещая атомы натрия и калия, у каждого из которых не хватает электрона (а потому они несут положительный электрический заряд). Если подключить отдыхающий нейрон к вольтметру, тот определит, что напряжение между внутренней и наружной областями клетки составляет 0,07 В. Если одно из окончаний нейрона снизит это напряжение, в клеточной мембране откроются чувствительные к напряжению каналы, заряженные атомы натрия начнут проходить по ним, напряжение снизится еще сильнее, и поток атомов усилится. Это цепная реакция, называемая разрядом, распространяется по всей длине нейрона со скоростью до 300 км/ч, пропуская внутрь клетки около миллиона атомов натрия. Аксон вскоре восстанавливается, и быстрые нейроны могут повторять этот процесс разряда более тысячи раз в секунду.
Рис. 8.7. Схематическое изображение нейрона (слева), участка его длинного отростка, называемого аксоном (посередине) и фрагмента мембраны аксона (справа). Большая доля площади аксона покрыта непроводящим веществом миелином, но на нем есть небольшие оголенные участки (примерно каждые полмиллиметра), где концентрируются чувствительные к электрическому напряжению натриевые и калиевые каналы. Когда нейрон находится в суперпозиции состояний возбуждения и покоя, около 1 млн атомов натрия (Na) находится в суперпозиции состояний внутри и снаружи клетки (справа).
Теперь предположим, что мозг – действительно квантовый компьютер и разряд нейронов каким-либо образом вовлечен в эти вычисления. Тогда отдельный нейрон должен быть способен находиться в суперпозиции выдавшего и не выдавшего разряд, а значит, около миллиона атомов натрия должны находиться в двух местах одновременно – внутри и снаружи нейрона. Квантовый компьютер работает лишь постольку, поскольку его состояние остается тайной для мира. Так долго ли нейрон может хранить в секрете, выдал он разряд или нет? Когда я подставил числа, ответ получился – «очень недолго»: около десяти миллиардных долей триллионной доли секунды (10–20 с). Столько времени обычно проходит, прежде чем случайная молекула воды столкнется с одним из миллиона атомов натрия и обнаружит себя, тем самым разрушив квантовую суперпозицию. Я также обсчитал другую модель Роджера Пенроуза, в которой квантовые вычисления выполняются не нейронами, а микротубулами, элементами цитоскелета клеток, и обнаружил, что они поддаются декогеренции примерно за 10–13 секунды (100 квадриллионных долей). Чтобы мои мысли соответствовали квантовым вычислениям, они должны завершаться прежде, чем случится декогеренция, так что мне следует думать со скоростью 10 000 000 000 000 мыслей в секунду. Может быть, Пенроуз умеет думать так быстро, а я нет.