Электроника?.. Нет ничего проще! - Жан-Поль Эймишен
Шрифт:
Интервал:
Закладка:
Л. — Обычно ему придают форму стержня или замкнутого сердечника, чтобы облегчить циркулирование магнитного потока. Очень важно, чтобы обе конечные плоскости были ровными и строго параллельными. Благодаря этому проходящая по стержню ультразвуковая волна Правильно отражается от его плоскостей и образует колебания типа стоячей волны. Каждый раз, когда эта волна сталкивается с граничной плоскостью, часть энергии вырывается во внешнюю среду, а остальная часть отражается внутрь феррита. Благодаря этой отраженной части энергии и поддерживаются колебания типа стоячей волны.
ФототелеграфияН. — Что происходит в ферритовом стержне, я понял. Но скажи, пожалуйста, Любознайкин, нельзя ли попытаться использовать в исполнительном элементе какие-либо иные явления, кроме ультразвука? Что, если подумать о применении света? Можно ли получить свет какими-нибудь другими способами, кроме старой доброй лампы накаливания?
Л. — О да, и целое множество! В первую очередь следует сказать об ионных лампах, в которых через газ пропускают поток ионов. Такая система неизмеримо лучше лампы накаливания способна воспроизводить быстрые изменения света. Именно такая лампа используется для передачи фотографий на расстояние по методу, который изобрел Эдуард Белин. В честь этого инженера фототелеграфию во Франции называют белинографией.
Передаваемая фотография укрепляется на равномерно вращающемся цилиндре (рис. 110), строго определенная частота вращения которого задается кварцем. Фотоэлемент Ф просматривает изображение вдоль линии пересечения плоскости, перпендикулярной оси цилиндра с его поверхностью, а точнее по спирали, выписываемой на цилиндре точкой, просматриваемой фотоэлементом, который медленно перемещается параллельно оси цилиндра.
Рис. 110. При передаче документа по фототелеграфу его укрепляют на цилиндре, который вращается и одновременно медленно перемещается вдоль своей оси перед фотоэлементом; благодаря такому движению цилиндра фотоэлемент точку за точкой просматривает весь документ. На приемной стороне лампы переменной яркости свечения воспроизводят документ на светочувствительной бумаге, двигающейся перед ней точно так же, как передаваемый документ движется перед фотоэлементом.
Н. — Дорогой Любознайкин, ты совершенно напрасно объясняешь так подробно. Этот тип разложения изображения настолько напоминает обычное телевидение, что мне все очевидно.
Л. — Тем лучше. Созданный фотоэлементом сигнал передается по телефонной линии; на приемной стороне после соответствующего усиления сигнал подается в ионную лампу, которая создает более или менее яркое пятнышко света на приемном цилиндре. Этот цилиндр абсолютно идентичен цилиндру на передающем конце, но вместо фотографии на нем укреплена чистая фотобумага, из-за чего он помещен в темную камеру. Приемный цилиндр вращается с такой же частотой, что и передающий (здесь полагаются на высокую точность и стабильность кварца). С помощью соответствующего синхронизирующего сигнала движение приемного барабана происходит в фазе с движением передающего барабана. Световое пятно перемещается по линии, параллельной оси цилиндра, с такой же частотой, что и фотоэлемент на передающем конце. После завершения приема бумагу с цилиндра проявляют и получают готовую фотографию.
Н. — Но одну штуку я здесь совсем не понимаю. Некогда, рассказывая о телевидении, ты неоднократно подчеркивал, что для передачи изображения необходима гигантская полоса пропускания, измеряемая в мегагерцах. А теперь ты говоришь мне о передаче изображения по телефонной линии. Этого я понять не могу.
Л. — В телевидении каждое изображение (его там называют кадром) передается за 1/25 долю секунды. Передача фотографии по методу Эдуарда Белина продолжается от 7 до 15 мин. Как ты видишь, можно значительно сократить полосу пропускания и поэтому воспользоваться телефонной линией.
Н. — Согласен, но точность воспроизведения получается весьма относительной. Теперь мне понятно, почему телефотографии, которые мы время от времени видим в газетах, отличаются таким плохим качеством.
Л. — Фототелеграф, Незнайкин, здесь ни при чем. Я могу показать тебе одновременно оригинал и копию, полученную с него на расстоянии 600 км, и я не убежден, что даже с лупой тебе удастся найти, которая из них копия. Дело в том, что по фототелеграфу обычно передают сверхсрочную информацию и в типографиях с них очень ускоренным способом изготовляют клише, что и приводит к большим искажениям в газетах.
Н. — Хорошо, теперь я не буду плохо отзываться о телефотографиях. Но скажи мне, Любознайкин, нельзя ли получать свет другим способом?
ЛазерЛ. — О, конечно можно. Я расскажу тебе о многообещающем способе; я имею в виду лазер, название которого образовано из первых букв его определения на английском языке (Liqht Amplification by Stimylated Emission of Radiation).
H. — Я кое-что слышал об этом приборе, мне даже сказали, что им можно создавать лучи смерти.
Л. — Как я вижу, Незнайкин, ты черпаешь свои знания в падкой на сенсации прессе. Не исключена возможность, что в отдаленном будущем кое-что из таких сообщений, к сожалению, окажется правдой. На сегодня лазер может дать прекрасно сфокусированный световой луч, который благодаря его острой направленности можно посылать на очень большие расстояния. Лазер несколько напоминает ультразвуковой генератор, о котором мы уже говорили. Основой прибора служит прозрачный стержень из материала типа рубина.
Торцы этого стержня строго параллельны и хорошо отполированы. Эти плоскости отражают внутрь возникающий при определенных обстоятельствах в кристалле свет, а часть его пропускают наружу. Вокруг этого кристалла (рис. 111) располагают очень мощный источник белого света, например лампу-вспышку, аналогичную той, которой ты пользуешься при фотосъемке. Вспышку света в таких устройствах получают, направляя разряд очень высоковольтного конденсатора большой емкости в лампу с ионизированным газом.
Рис. 111. В лазере на твердом теле лампа-вспышка спиральной формы размещается вокруг кристалла; излучаемый ею свет возбуждает атомы кристалла. Отдавая полученную энергию, эти атомы порождают луч света, для которого кристалл со своими плоскими и параллельными торцами служит оптическим резонатором
Н. — Так из кристалла вырывается свет лампы-вспышки! Но тогда в твоем лазере нет ничего нового.
Л. — Ты ошибаешься. Световая энергия порождается кристаллом. Энергия лампы-вспышки, поданная кристаллу в виде света, называется энергией накачки и вызывает внутри этого кристалла активацию некоторых атомов, иначе говоря, переводит их на более высокий энергетический уровень. Затем эти атомы отдают свою энергию и переходят на более низкий энергетический уровень. Эта выделившаяся энергия и излучается в виде света. Кристалл со своими полированными и строго параллельными торцами представляет собой высоко добротный резонатор. Возникший таким образом свет излучается через один из торцов в виде пуска строго параллельных лучей.
Н. — А по своей мощности излучаемый кристаллом свет равен мощности лампы-вспышки?
Л. — Намного меньше, но лазер обладает одним очень ценным качеством: он дает так называемый когерентный свет. В отличие от света, излучаемого накаленными телами или ионизированными газами, этот свет состоит из одного пакета волн, создающего колебания в течение значительного отрезка времени. При других способах получения света световая энергия излучается в виде большого количества очень коротких по времени колебаний, каждое из которых представляет собой очень короткий пакет волн (несколько сантиметров, что, учитывая скорость света, соответствует очень короткому интервалу времени) без какого бы то ни было согласования фазы.
В отличие от этого испускаемый лазером свет по своей структуре аналогичен электромагнитной волне, излучаемой антенной. Существуют также газовые лазеры, в которых специальным образом подобранный газ помещается в более или менее длинную трубу с полупрозрачными строго ровными и параллельными торцевыми плоскостями. Этот газ возбуждается небольшим электрическим разрядом наподобие люминесцентных ионных ламп. Но в отличие от них лазер излучает когерентный свет. Строго параллельный лазерный луч света можно сконцентрировать линзой настолько, что полученная энергия в пересчете на 1 см2 окажется огромной. Сконцентрированный таким образом лазерный луч почти мгновенно пробивает тонкую стальную пластинку. Именно этот эксперимент породил идею создания разрушительного лазерного оружия, которое, к счастью, до сих пор осталось проектом, но которое, к сожалению, когда-нибудь может стать ужасной реальностью.