Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Хаос. Создание новой науки - Джеймс Глейк

Хаос. Создание новой науки - Джеймс Глейк

Читать онлайн Хаос. Создание новой науки - Джеймс Глейк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 42 43 44 45 46 47 ... 75
Перейти на страницу:

Струящиеся ручьи, качающиеся маятники, электронные осцилляторы и множество других физических систем испытывают переход на пути к хаосу. Хотя такие переходы весьма сложны для анализа, механизмы функционирования систем довольно хорошо изучены. Физики знают уравнения, которые описывают эти системы, но перебросить мост от уравнений различного вида к глобальному долгосрочному поведению объектов не удается. Открытие Файгенбаума подсказывало, что дело не в уравнениях: с появлением порядка вид уравнения терял свою значимость, и независимо от него результат получался один и тот же. «Традиция физики такова, что мы обособляем и детализируем механизмы явления, а затем исследуем их по отдельности, — пояснял Файгенбаум. — В данном же случае мы знаем верные уравнения, но они нам не помогут. Суммировав все микроскопические фрагменты, мы выясним, что не можем распространить их на длительный период, потому что не они важны в интересующей нас проблеме. И это коренным образом меняет смысл выражения знать что-либо».

И хотя связь между вычислениями и физикой казалась весьма проблематичной, Файгенбаум понял, что должен искать новый способ расчетов сложных нелинейных проблем. До сих пор он занимался перебором различных функций, пытаясь подыскать среди них подходящую для моделирования систем. Открытие некой всеобщности означало, что избранный путь ведет в никуда. Регулярность никоим образом не касалась синусов, не имела ничего общего с параболами или с другими отдельно взятыми функциями. Почему? Это был шок! Природа, на мгновение отдернув занавес, позволила нам украдкой взглянуть на неожиданную упорядоченность. Но что еще пряталось за покровом тайны?

Озарение явилось Файгенбауму в образе двух небольших волнистых форм и еще одной, покрупнее. И ничего больше. Лишь яркое и четкое изображение, словно врезавшееся в сознание. Верхушка айсберга, отголосок мыслительных процессов, происходивших где-то на уровне подсознания; он был связан с масштабированием и указывал верный путь.

Файгенбаум изучал аттракторы. Устойчивое равновесие, о котором говорили его графики, являлось фиксированной точкой, притягивавшей, в свою очередь, другие. Не имело значения, какова начальная «популяция», — она все равно неуклонно приближалась к аттрактору. Затем, с первым раздвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Первоначально две эти точки находились совсем рядом, но по мере роста значения параметра они отдалялись друг от друга. Затем происходило следующее расщепление периодов, и каждая точка аттрактора вновь начинала делиться. Число — инвариант, полученный Файгенбаумом, — позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора — в двух, четырех, восьми точках… Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Кроме того, здесь наблюдалась некая сходимость: все числа также подчинялись закону масштаба.

Файгенбаум занимался изучением давно забытой пограничной области между физикой и математикой. Какой из двух дисциплин принадлежит его работа, определить было нелегко. С одной стороны, его труд не принадлежал математике, ибо ничего не доказывал. Конечно, ученый оперировал числами, но математик относится к ним так же, как банкир к мешкам со звонкой монетой. Номинально эти металлические кругляши — предмет труда финансиста, но они мелковаты, и возни с ними не оберешься. Идеи — вот настоящая валюта математики! Изыскания Файгенбаума относились скорее к области физики, причем, как ни странно, физики экспериментальной.

Не мезоны и кварки, а числа и функции являлись объектом внимания ученого. Они тоже имели траектории и орбиты. Ему приходилось исследовать их поведение. Используя термин, который позже станет ходовым в новой науке, можно сказать, что Файгенбауму требовалось добиться интуитивного прозрения, которое отлилось бы в теорию и методологию. Спектрометр, ускоритель частиц и пузырьковую камеру ему заменил компьютер. Обычно пользователь формулирует задачу, программирует ее, вводит в вычислительную машину и ждет решения — одного для каждой конкретной проблемы. Файгенбаум и те, кто шел по его стопам, нуждались в большем. Требовалось повторить проделанное Лоренцем — создать миниатюрные вселенные и наблюдать за их эволюцией. Затем, меняя то или иное свойство, исследователи могли проследить, как меняются пути развития. В конечном счете они убедились, что крошечные изменения определенных качеств могут повлечь за собой значительные метаморфозы поведения системы в целом.

Рис. 6.1. Хаос под микроскопом. Простое уравнение, повторяемое много раз. Файгенбаум сосредоточился на линейных функциях, вычисляя значение одной величины в зависимости от значения другой. Для Популяций животного мира функция выражала соотношение между численностью в текущем и следующем году. Одним из способов наглядного представления таких функций является построение графика, где исходные данные отмечаются на горизонтальной оси, а конечные — на вертикальной. Для каждого значения x существует лишь одно значение y, и оба они образуют форму, представленную сплошной линией. Затем, чтобы изобразить долгосрочное поведение системы, Файгенбаум вычертил траекторию, начинавшуюся с произвольно взятого значения x. Поскольку каждое значение у вновь подставлялось в ту же функцию в качестве новой исходной величины, ученый мог применить нечто вроде схематичного сокращения. Траектория скачками отдалялась от прямой, проведенной под углом 45°, где значения x и y равны. Для эколога наиболее очевидным типом функции, отображающей рост популяции, будет линейная — мальтузианская схема устойчивого и ничем не ограниченного увеличения с фиксированным ежегодным приростом (вверху слева). Более «реалистичные» функции представляют собой дугу, демонстрируя популяции. Здесь изображена так называемая логистическая карта для параболы, заданной функцией y = rx (1-x), где параметр r меняется от 0 до 4, определяя крутизну параболы. Но, как выяснил Файгенбаум, вид функции не имел значения. Действительно важным оказалось наличие у нее выпуклости. Поведение существенно зависело и от того, насколько парабола крута — от степени нелинейности, которую Роберт Мэй назвал «взлетами и падениями» (т. е. от способности живущей в естественных условиях популяции к увеличению и снижению числа составляющих ее особей). Слишком низкая парабола означала вымирание: любое начальное значение фактически приводило к нулю. Увеличение степени крутизны порождало устойчивое равновесие — ситуацию, понятную для эколога, который придерживается традиционных взглядов. Точка равновесия, находясь на любой траектории, являлась одномерным аттрактором. После определенной точки начинались разветвления, порождающие колеблющуюся популяцию с двумя периодами. Затем опять происходило удвоение периода, и еще, и еще раз, так что в конце концов траектория «успокаивалась» (внизу справа). Когда Файгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять на языке итераций: функции функций, функции функций от функций и т. д.; схемы с двумя «горбами», потом с четырьмя…

Файгенбаум быстро выяснил, что компьютеры Лос-Аламоса мало подходят для вычислений, которые он задумал. Несмотря на огромные ресурсы лаборатории, гораздо более обширные, нежели в большинстве университетов, лишь несколько терминалов могли воспроизводить графики и изображения, да и те находились в отделе вооружения. Файгенбаум намеревался наносить определенные числа в виде точек на своеобразную карту и вынужден был прибегнуть к наиболее простому из возможных методов: он использовал длинные рулоны распечаток, где просматривались линии, составленные из чередующихся пробелов, звездочек и знаков сложения. Официальная политика лаборатории заключалась в том, что один большой компьютер лучше нескольких менее мощных. Это было следствие курса «одна проблема — одно решение». Маломощные машины отбивали всякую охоту к исследованиям; к тому же, приобретая компьютер, каждый отдел должен был следовать обязательным указаниям сверху и давать в этом отчет. Лишь гораздо позже, благодаря финансовой помощи теоретического отдела, Файгенбаум получил в личное пользование вычислительную машину стоимостью 20 000 долларов. Теперь он мог видоизменять свои уравнения и мелькавшие на экране картины, перестраивать их, играя на компьютере, словно на музыкальном инструменте. Но это было позже, а пока единственные терминалы, за которыми удавалось всерьез работать с графикой, находились в строго охраняемых зонах, как говорили в лаборатории — за забором. Файгенбауму приходилось использовать терминал, соединенный телефонными кабелями с центральным компьютером. Имея дело с таким устройством, оценить истинную мощность машины на другом конце кабеля весьма сложно, — даже решение простейших задач занимало целые минуты. Чтобы отредактировать лишь одну строчку программы, приходилось, нажав клавишу «Возврат», ждать под непрерывный гул терминала, пока центральный компьютер не обслужит других пользователей.

1 ... 39 40 41 42 43 44 45 46 47 ... 75
Перейти на страницу:
На этой странице вы можете бесплатно скачать Хаос. Создание новой науки - Джеймс Глейк торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит