Хаос. Создание новой науки - Джеймс Глейк
Шрифт:
Интервал:
Закладка:
Как коллекционер огнестрельного оружия в эпоху автоматов и базук с тоской вспоминает «кольт» сорок пятого калибра, так и в глубине души современного ученого таится легкая ностальгия по ручному калькулятору модели НР-65. За несколько лет полного господства этому вычислительному устройству удалось навсегда изменить привычки многих исследователей. Для Файгенбаума же счетная машина перекинула мостик от карандаша и бумаги к компьютеру, не сразу оцененному по достоинству служителями науки.
Он еще ничего не знал о Лоренце, но летом 1975 г. на встрече в Аспене, штат Колорадо, услышал рассуждения Стива Смэйла о некоторых свойствах квадратичных разностных уравнений. Смэйл считал открытием некоторые весьма волнующие вопросы о переходе модели от периодичного к хаотическому состоянию. Он не утратил свое отменное чутье на действительно стоящие проблемы. Файгенбаум решил взглянуть на уравнение еще раз. Вооружившись калькулятором, он применил сочетание аналитической алгебры и численных методов, чтобы обозреть свою модель, и главным образом — пограничную зону между хаосом и стабильностью.
В поисках аналогий Файгенбаум мог обратиться к той таинственной границе, что отделяет плавное течение жидкости от турбулентного. Именно к данному участку Роберт Мэй пытался привлечь внимание биологов, которые не замечали, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу в указанной зоне возникает целый каскад раздвоения периодов: расщепление двух на четыре, четырех — на восемь и т. д., представляющее собой весьма удивительную картину. Именно в точках бифуркации некоторое увеличение плодовитости особей могло привести к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Файгенбаум решил начать с подсчета точных значений параметра, порождавших расщепления.
В конце концов к открытию ученого привело, как ни странно, низкое быстродействие калькулятора. Казалось, расчеты точного значения параметра для каждого удвоения периодов растягиваются на века, хотя на самом деле вычисления занимали считанные минуты. Однако чем выше поднимался Файгенбаум по цепочке циклов, тем больше времени требовали операции с числами. Имей ученый мощный компьютер и печатающее устройство, он, пожалуй, не заметил бы никакой закономерности, но ему приходилось записывать результаты вручную и, пока калькулятор работал, размышлять над ними. Чтобы сэкономить время, он просто-напросто пытался угадать, каким будет следующее значение.
И вдруг Файгенбаум увидел, что гадать уже незачем. В системе пряталась неожиданная упорядоченность, числа приближались друг к другу, словно столбы высоковольтной линии, сходящиеся на горизонте в точку, — удвоения периодов не просто ускорялись, а ускорялись с постоянным коэффициентом.
Почему так происходило? Обычно появление геометрической сходимости предполагает, что в определенном месте некий объект повторяет сам себя в различных масштабах. Если внутри изучаемой системы таилась подобная масштабная модель, это было очень любопытно. Никто еще такого не наблюдал. Файгенбаум, рассчитав коэффициент конвергенции с наибольшей точностью, какая могла быть достигнута с имевшимся у него калькулятором (три цифры после запятой), получил следующий результат: 4,669. Имел ли данный коэффициент какой-либо математический смысл? Файгенбаум сделал то, что на его месте сделал бы любой ученый, хоть немного интересующийся числами: он провел остаток дня, пытаясь подогнать получившийся итог под известные постоянные: π, e и другие, но это ни к чему его не привело.
Удивительно, но позже Роберт Мэй понял, что он тоже наблюдал подобную геометрическую сходимость, однако забыл о ней столь же быстро, сколь мимолетно она промелькнула перед его глазами. С точки зрения эколога, это был не более чем специфический вычислительный эффект. В системах реального мира — популяциях животных и даже в некоторых экономических моделях — любые четкие закономерности неизбежно исчезали в шумах. Та самая неупорядоченность, которая до сих пор служила ученому путеводной нитью, заставила его остановиться на пороге открытия. Никогда бы ему не пришло в голову, что числовые тонкости столь важны.
Но Файгенбаум прекрасно понимал, к чему привели его вычисления, поскольку геометрическая сходимость указывала на присутствие в уравнении чего-то масштабного, а Митчелл в полной мере сознавал существенность масштаба, от которого, по сути, зависела вся теория перенормировки. В явно неуправляемой системе масштабность свидетельствовала о том, что определенное качество сохраняется, в то время как все остальные претерпевают изменения. Итак, где-то в изучаемом уравнения пряталась упорядоченность. Но где именно? Куда идти дальше, сказать было сложно.
Лето быстро сменяется осенью, которая сильно чувствуется в разреженном воздухе Лос-Аламоса. Уже подходил к концу октябрь, когда Файгенбауму пришла в голову странная мысль. Он знал, что Метрополис, Пол Стейн и Майрон Стейн, рассматривая описанное выше уравнение и другие, выяснили, что определенное поведение повторяется при переходе от одного типа функции к другому. Обнаруживались те же сочетания знаков «П» и «Л», причем в том же порядке. Одна из исследованных ранее функций включала синус, из-за чего тщательно разработанный Файгенбаумом подход к изучению параболы оказался неподходящим. Ему пришлось начать заново; вновь используя свой НР-65, он начал рассчитывать удвоения периодов для функции xt+1 = r sin πхt. Расчет тригонометрической функции значительно замедлял вычислительную процедуру, и Файгенбауму пришла мысль использовать сокращенный вариант уравнения. И вновь, задав наибольшую возможную точность, он получил результат с тремя цифрами после запятой: 4,669.
То же число! Невероятно, но данная тригонометрическая функция не просто обнаруживала последовательную геометрическую регулярность. Наблюдаемый эффект оказался численно идентичным упорядоченности гораздо более простой функции! Ни математика, ни физика не объясняли, каким образом два столь различных по форме уравнения приводили к одинаковому результату.
Файгенбаум связался с Полом Стейном, но тот не поверил в подобное совпадение, посчитав доказательства недостаточными, — в конце концов, точность калькулятора оставляла желать лучшего. Несмотря на это Файгенбаум позвонил своим родителям в Нью-Джерси и сообщил, что столкнулся в своих исследованиях с весьма глубоким вопросом. Этот вопрос, объявил он матери, скоро сделает его, Файгенбаума, знаменитым. Затем он приступил к изучению других функций — всех, которые, по его мнению, также проходили через последовательность разветвлений на пути к хаосу. Вычисления давали неизменно тот же итог — 4,669.
Файгенбаум имел дело с цифрами всю свою жизнь. Еще подростком он научился рассчитывать логарифмы и значения синусов, которые все остальные искали в таблицах. Вместе с тем он даже не представлял, как использовать в исследованиях иное счетное устройство, кроме ручного калькулятора. Митчелл относился к тем многочисленным физикам и математикам, которые презирали свойственное компьютеру механистическое мышление. И вот час компьютера пробил! Файгенбаум обратился к коллеге с просьбой научить его программированию на Фортране и уже к вечеру для каждой из множества взятых им функций подсчитал свою постоянную с точностью до пяти цифр после запятой — 4,66920. Проштудировав ночью правила вычислений с двойной точностью, Файгенбаум на следующий день получил значение 4,6692016090. Этого было достаточно, чтобы убедить Стейна, но самого Митчелла все еще одолевали сомнения. Он намеревался искать упорядоченность — квинтэссенцию математики. Однако, приступая к делу, ученый уже знал, что некоторым типам уравнений, как и отдельным физическим системам, присущи особые свойства. Конечно, уравнения были довольно простыми — квадратичные и тригонометрические, функционально разные, но вполне тривиальные с математической точки зрения. И все же содержалось в них нечто такое, что из раза в раз рождало одно-единственное число. Что это, гадал Файгенбаум, игра случая — шутка мироздания или новый закон природы?
Представьте себе такую ситуацию: доисторический мыслитель обнаружил, что некоторые объекты тяжелее всех остальных и обладают неким абстрактным качеством, которое он назвал весом. Конечно же, сию мысль необходимо научно обосновать. Наш экспериментатор на самом деле никогда еще не измерял вес, но вроде бы кое-что ему понятно. Он смотрит на огромных змей и крошечных змеек, на больших медведей и маленьких медвежат и догадывается, что размер животного, должно быть, связан каким-то образом с его весом. Построив весы, он начинает взвешивать змей. К его удивлению, все змеи весят одинаково. С медведями та же история, но что удивительнее всего — косолапые весят столько же, сколько змеи — 4,6692016090! Ясно одно: вес является вовсе не тем, что полагал пытливый ум. Вся идея требует переосмысления.