Одиль - Реймон Кено
Шрифт:
Интервал:
Закладка:
– Но ведь, – внезапно сказал его спутник, – когда вы были там, вас могли бы заставить стрелять в рифов.
– Конечно, – сказал я.
– И что бы вы сделали?
– Это щекотливый вопрос, – сказал я. Ж. сменил тему.
– Не хочешь пойти с нами вечером на митинг к Зимнему велодрому?
– Дорио выступит, – сказал его спутник.
Дорио в самом деле выступил. Конечно, это было великолепно. Приятель Ж. пел с энтузиазмом, я же не знал слов. Я смотрел и слушал. Ж. оставил нас, чтобы выполнить обязанности, которые он должен был выполнить. Внезапно, когда все закончилось, мы оказались вместе, этот человек и я, около Гренель, на левом берегу, ночью. Мы поговорили.
– Вы в партии?
– Нет, а вы?
– Нет, я сочувствующий.
– Я тоже сочувствую.
– Но вы не вступаете.
– Нет, в политике мне нечего делать.
– Речь идет не о политике. Речь идет о революции.
– Да. О революции.
– Тогда почему же вы не вступаете?
– Это не так просто, как кажется.
– Понимаю.
– Нет, это не так просто, как вы можете подумать, особенно для поэта.
– А вы поэт?
– Да. Саксель.
– Простите?
– Я говорю: мое имя Саксель.
– А! Саксель.
Он взглянул на меня.
– А вы пишете?
– Нет, по крайней мере все зависит от того, как это понимать.
– Ну все-таки, если вы не писатель, вы поэт, драматург, романист, журналист, литературный критик?
– Ничего подобного.
– Во всяком случае, вы работник умственного труда.
– Если бы я мог быть умным!
– Вы высоко цените ум?
– Ценю – это еще мало сказано.
Мы поспорили. Он утверждал, что презирает ум. Я шел вместе с ним, мы добрались до Монпарнаса, он предложил выпить пива; то, что он называл моим интеллектуализмом, выводило его из себя, но ему хотелось продолжать выстраивать свои фразы. Мы уселись посреди внушительной толпы, я второй раз за один и тот же вечер видел столько народу.
– Здесь есть забавные типы, – сказал я.
– Вы здесь впервые?
– Да.
Он с трудом скрывал свое уныние; интересно, какой еще социал-демократический транспарантик притащил он с собой? Я не знал, что ему сказать. Перед нашим столиком остановился некто и заговорил с Сакселем. Прозвучало несколько незначительных слов. Потом этот субъект, одетый в бархат, ушел.
– Это Владислав, художник, – сказал мне Саксель.
– А-а! – сказал я.
– Вы слышали что-нибудь о нем?
– Кажется, да, – сказал я.
Саксель взглянул на меня. Что же я за человек? Мы выпили несколько кружек.
– Существует только один мир, – сказал я, – тот мир, который вы видите, или полагаете, что видите, или вам кажется, что видите, или который вы очень хотели бы увидеть, тот мир, который осязают слепые, который слышат безрукие и который обоняют глухие, это мир вещей и сил, очевидностей и иллюзий, это мир жизни и смерти, рождений и уничтожений, мир, в котором мы пьем, посреди которого мы имеем обыкновение засыпать. Но существует, по крайней мере, еще один в моем сознании: мир чисел и фигур, тождеств и функций, вычислений и групп, множеств и пространств. Есть люди, как вы знаете, которые утверждают, что все это лишь абстракции, конструкции, комбинации. Они хотят, чтобы мы представляли нечто вроде архитектуры: в природе берутся элементы, очищаются, полируются, высушиваются и человеческий ум возводит из этих кирпичей великолепное здание, внушительное свидетельство своей силы. Вы, безусловно, должны быть знакомы с этой теорией, скорее всего, ее придерживался ваш преподаватель философии – это самая заурядная теория. Здание, они считают математическую науку зданием! Перед тем как строить первый этаж, убеждаются в прочности фундамента, а над законченным первым этажом надстраивают второй, потом третий и так далее, так что нет причин для завершения. Но в действительности все происходит не так: не с архитектурой и не со строительством нужно сравнивать геометрию и анализ величин, а с ботаникой, географией, даже с физическими науками. Речь идет о том, чтобы описать мир, открыть его, а не строить и изобретать, поскольку он существует вне человеческого сознания и не зависит от него. Мы должны исследовать эту вселенную и сказать потом людям, что мы там видели – именно видели. Но чтобы выразить это, нужен особый язык – язык знаков и формул, который обычно принимают за саму суть науки, тогда как он – всего лишь способ выражения. Этот язык оказывается еще более бессильным описать богатства математического мира, чем французский язык, чтобы точно выразить множество понятий, потому что они находятся на разных уровнях бытия. Впрочем, есть нечто вроде математической филологии, которая называется логикой. Но я вам, наверно, надоел?
– По правде говоря, я вас не совсем хорошо понимаю, – ответил Саксель.
– Мне следовало бы привести примеры.
– Наверное, это сложно.
– Нет, совсем нет. Есть один пример, который приводят всегда, это алгебраические уравнения с одним неизвестным.
– Уравнения, тьфу, – сказал Саксель.
– А, – поддразнил я, – вы юноша с кружкой, вероятно, из тех, кто хвастается, что ничего не смыслит в математике, кто гордится тем, что не смог одолеть простейшей теоремы о квадрате гипотенузы.
– Это мое дело, – сказал Саксель.
– И это вас не огорчает?
– А должно огорчать?
– Ну, наверно. Какое удовлетворение можно испытывать от того, что чего-то не понимаешь?
– Ладно, вернемся к вашим уравнениям.
– Вам это не слишком претит?
– Я преодолею свое отвращение.
– Вы знаете, что такое решить уравнение?
– Кажется, знаю.
– Тогда скажите.
– Гм. Это значит найти величину неизвестного.
– Как?
– Произведя вычисления.
– Но какие?
– Ну, сложение, вычитание, умножение, деление.
– А еще?
– Их больше четырех?
– Думаю, что так.
– А, да, действительно, есть еще извлечение корня, чем занимался ученый Косинус.[2]
– Это действие, обратное возведению в степень.
– Можно отлично поиграть всеми этими выражениями.
– Вы строите каламбуры?
– Что вы хотите: современное мышление. Вернемся к вашим чертовым уравнениям, юноша с кружкой.
– Сколько действий вы произведете, чтобы найти свое неизвестное?
– Как сколько?
– Ну да, сколько?
– Откуда же мне знать?
– Конечное или бесконечное число действий?
– Бесконечное число – вы шутите, разве на это есть время?
– Вот он, непробиваемый здравый смысл. Но признаюсь вам, что в анализе величин, например, постоянно рассматриваются выражения, которые предполагают бесчисленное число действий.
– Вы меня сразили.
– Но поскольку речь идет об алгебраических действиях, мы не будем выходить за пределы алгебры и рассмотрим только решение уравнений с помощью конечного числа алгебраических действий и особенно действий, связанных с радикалами.