Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » Революция в физике - Луи де Бройль

Революция в физике - Луи де Бройль

Читать онлайн Революция в физике - Луи де Бройль

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 55
Перейти на страницу:

Одним из важнейших успехов теории Гамова явилось объяснение закона Гейгера – Неттола, согласно которому скорость вылетающих «альфа»-частиц для элементов с малым периодом полураспада больше, чем для долгоживущих. Этот закон математически выражается соотношением между постоянной распада и энергией «альфа»-частиц, испущенных при распаде, соотношением, из которого следует, что постоянная распада очень сильно зависит от энергии «альфа»-частиц.

Теория Гамова очень хорошо объясняет этот закон. Причину такого согласия легко понять: чем больше энергии недостает частице, заключенной в потенциальной яме, чтобы достичь высоты барьера, тем меньше вероятность ее вылета. И эта вероятность очень быстро падает с уменьшением энергии заключенной в яме частицы. Но так как вероятность равна постоянной распада и так как частица, вышедшая благодаря туннельному эффекту, обладает той же энергией, что и до выхода, мы находим, таким образом, соотношение между постоянной распада и энергией «альфа»-частицы, испущенной при распаде ядра. Вид формулы согласуется с экспериментом. Правдоподобные гипотезы относительно профиля потенциала ядра позволяют достичь и численного соответствия. Конечно, теория Гамова очень неполна, ибо ядра тяжелых радиоактивных элементов гораздо более сложны, и их нельзя рассматривать просто как потенциальные ямы, наполненные «альфа»-частицами. Тем не менее, успех теории Гамова в объяснении некоторых фактов показывает значение новых понятий волновой механики и необходимость вероятностной трактовки при разрешении некоторых несомненных трудностей, возникающих в экспериментах.

Глава IX. Квантовая механика Гейзенберга

1. Основные идеи Гейзенберга

Первая работа Гейзенберга по квантовой механике появилась в 1925 г., когда уже были сформулированы первые идеи волновой механики, но еще не были опубликованы статьи Шредингера. Правда, казалось, что цель Гейзенберга совершенно отличается от той, которую ставил себе Шредингер. Основные идеи Гейзенберга не имели фактически никакой видимой связи с теми, которые положили начало успехам волновой механики, а развитый им формализм имел весьма специальный вид.

Рассмотрим идеи, которыми руководствовался Гейзенберг. Как мы знаем, Гейзенберг принадлежал к «копенгагенской школе», которая сформировалась вокруг Бора. Свои первые шаги в науке он посвятил применению метода соответствия. Поэтому вполне естественно, что сам дух этого метода, сколь оригинального, столь и глубокого, насквозь пропитал его мысли. Одна из существенных идей, возникших из изучения принципа соответствия, заключалась в следующем. В то время как классическая теория выражает величины, относящиеся к квантованной системе, в виде разложения в ряд Фурье, члены которого соответствуют непрерывному и одновременному испусканию различных излучений, квантовая теория разлагает те же величины на элементы, отвечающие различным возможным переходам атома, причем каждый из этих элементов связан с дискретными и индивидуальными актами испускания излучения. Как мы уже поясняли раньше, цель знаменитого боровского принципа заключалась в установлении соответствия, по крайней мере асимптотического, между этими двумя столь различными представлениями.

По-видимому, Гейзенберг столкнулся с тем обстоятельством, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины я свести их к набору отдельных элементов, соответствующих различным возможным переходам квантованного атома. Отсюда идея, на первый взгляд весьма сомнительная: представлять каждую физическую характеристику системы таблицей чисел, аналогичной той, которую математики называют матрицей. Подобно этому в классической теории ряды Фурье представляют собой разложение физической величины на бесконечные множества дискретных элементов, причем вся совокупность этих элементов изображает рассматриваемую величину. Конечно, эти элементы должны удовлетворять некоторым условиям, а именно, для больших квантовых чисел классические и квантовые разложения должны асимптотически совпадать. Как показал Бор, этим устанавливается соответствие между различными переходами и компонентами классического ряда. Фурье.

Гейзенберг увидел еще одно преимущество этого нового представления величин набором матричных элементов; он надеялся, применяя его, исключить из теории ненаблюдаемые величины, которые обременяли прежнюю квантовую теорию. Пользуясь довольно громоздким выражением, взятым из философского словаря, он занял строго феноменологическую позицию и хотел исключить из физической теории все, что нельзя наблюдать непосредственно.

Зачем нужно вводить в наши атомные теории положение, скорость или траекторию атомных электронов, если мы все равно не можем ни измерять эти характеристики, ни наблюдать их? Единственно, что нам известно об атоме – это его стационарные состояния, переходы между ними и излучения, которые сопровождают эти переходы. Поэтому в наши расчеты нужно вводить только величины, связанные с этими реально наблюдаемыми величинами. Такую задачу поставил себе Гейзенберг. В его матрицах элементы располагаются в строки и столбцы, причем каждый из них имеет два индекса: один соответствует номеру столбца, другой – номеру строки. Диагональные элементы, т е. те индексы которых совпадают, описывают стационарное состояние. Недиагональные элементы с разными индексами описывают переходы между стационарными состояниями, соответствующими этим индексам. Что же касается величины этих элементов, то ее нужно связать по формулам, полученным с помощью принципа соответствия, с величинами, характеризующими излучение при этих переходах. Таким путем будет создана теория, в которой все величины будут описывать наблюдаемые явления.

Конечно, было бы удивительно, если бы Гейзенбергу действительно удалось исключить из теории все ненаблюдаемые величины. Наличие в формализме его квантовой механики матриц, изображающих координаты и импульсы атомных электронов, оставляет в этом смысле некоторые сомнения. Однако эта попытка Гейзенберга, даже если ему и не удалось полностью выполнить свою философскую программу, привела к созданию новой механики, механики совершенно особого вида. Она дала замечательные результаты и представляет собой значительную ступень в развитии новых квантовых теорий.

2. Квантовая механика

Очень трудно даже совершенно поверхностно излагать квантовую механику, не пользуясь математическим формализмом, потому что можно сказать, сущность этой новой механики заключается именно в ее формализме. Тем не менее мы попытаемся дать читателю хотя бы смутное представление о том, что такое квантовая механика, механика матриц, рождением которой мы обязаны Гейзенбергу, а дальнейшим развитием – Гейзенбергу, Борну в Иордану.

Итак, Гейзенбергу принадлежит идея замены физических величин, с которыми имеют дело в атомной теории, таблицами чисел, матрицами. Исходя из принципа соответствия, он пытался вначале установить правила сложения и умножения различных матриц, каждую из которых нужно рассматривать как единое математическое целое. Он обнаружил, что эти правила сложения и умножения в точности совпадают с правилами для матриц, которыми пользовались математики в теориях алгебраических уравнений и линейных преобразований. Этот результат, a priori, отнюдь не очевидный, очень упростил задачу, ибо свойства алгебраических матриц были уже с давних пор хорошо известны.

Необычным оказалось одно свойство этих матриц – произведение их некоммутативно, оно зависит от порядка сомножителей. Произведение первой матрицы на вторую не равно произведению второй на первую.

Таким образом, Гейзенберг представил физические величины числами, не обладающими свойством коммутативного умножения. Этот факт можно рассматривать как самую основу квантовой механики, и Дирак в своей первой работе отстаивал именно эту точку зрения. Он считал, что переход от классической физики к квантовой заключается просто в представлении физических величин не обычными числами, а квантовыми числами, произведение которых не обладает свойством коммутативности.

Огромное большинство физиков того времени находило, что произвести подобную замену далеко не так просто.

Гейзенберг должен был найти также способ введения в свою теорию кванта действия, И снова он пошел по пути, которым постоянная hбыла введена в классические уравнения старой квантовой теорией, и попытался с помощью принципа соответствия перенести этот способ введения hв свою новую механику.

Результат оказался очень точным, хотя на первый взгляд несколько удивительным. Нужно было предположить, что при перемножении матрицы, соответствующей координате, на матрицу, соответствующую канонически сопряженной компоненте импульса, порядок множителей не безразличен и что разность между произведением этих двух величин, взятых в одном порядке, и их произведением в противоположном порядке равна постоянной Планка, умноженной на некоторое число.

1 ... 35 36 37 38 39 40 41 42 43 ... 55
Перейти на страницу:
На этой странице вы можете бесплатно скачать Революция в физике - Луи де Бройль торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит