Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Биология » Глаз, мозг, зрение - Дэвид Хьюбел

Глаз, мозг, зрение - Дэвид Хьюбел

Читать онлайн Глаз, мозг, зрение - Дэвид Хьюбел

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 65
Перейти на страницу:

Рис. 78. Результаты двух экспериментов с радиоактивной дезоксиглюкозой. Вверху: срез, проходящий через затылочные доли обоих полушарий животного, воспринимавшего зрительные стимулы обоими глазами после внутривенного введения метки. Внизу: после инъекции животное воспринимало стимул лишь одним глазом (другой был закрыт). В этом случае в коре хорошо заметны колонки глазодоминантности. (Эксперименты C. Kennedy, M. N. Des Rosiers, O. Sakurada, M. Shinohara, M. Reivich, T. W. Tehle, L. Sokoloff.)

Идею того же метода исследования удачно развил Р. Тутелл из лаборатории Рассела де Валуа в Беркли, взяв в качестве стимула для животного, смотревшего на экран одним глазом, большую фигуру в виде концентрических окружностей и радиальных линий (рис. 79, вверху). Получившаяся в результате картина корковой проекции тоже содержала круги и радиусы, но только в искаженном виде, что связано с неодинаковым увеличением разных участков сетчатки в их проекции на стриарную кору (с этим же связано и различие в остроте зрения на периферии сетчатки и в центральной ямке). Кроме того, каждая из окружностей и каждый из радиусов разбиты на множество мелких участков, соответствующих колонкам глазодоминантности. При одновременной стимуляции обоих глаз полосы были бы непрерывными. Редко так бывает, что в одном эксперименте удается столь четко продемонстрировать сразу несколько важных фактов.

Рис. 79. В этом эксперименте, проведенном Р. Тутеллом, в центре поля зрения наркотизированного макака в течение 45 мин предъявляли стимул, напоминающий мишень с несколькими радиальными линиями. Предварительно животному была сделана инъекция радиоактивной 2-дезоксиглюкозы. Один глаз был закрыт. В нижней части рисунка показано распределение метки в стриарной коре левого полушария мозга. На этом радиоавтографе представлен срез коры, параллельный ее поверхности. Перед тем как сделать срез, корковую ткань растянули и заморозили. Полукруглые линии стимула отображаются в коре как почти вертикальные линии, а радиальные линии правой части зрительного поля — в виде горизонтальных линий. «Пунктирный» характер каждой линии на радиоавтографе обусловлен тем, что в опыте стимулировался только один глаз и, значит, возбуждались только соответствующие колонки глазодоминантности.

Колонки глазодоминантности есть у кошек, некоторых низших обезьян, шимпанзе и человека. У грызунов и тупайи их нет. У саймири (род обезьян Нового Света) некоторые указания на возможное существование таких колонок получены в физиологических экспериментах, но современные методы морфологического анализа не выявляют их. В настоящее время нам неизвестна роль этого сложного распределения сигналов, приходящих от разных глаз; возможно, что оно имеет какое-то отношение к стереоскопическому зрению.

Подразделение на участки с функционально специализированными клетками было обнаружено не только в стриарной коре. Впервые такие участки описал в середине 1960-х годов В. Маунткасл в соматосенсорной коре. Это явилось наиболее важным открытием с того времени, когда были получены первые сведения о локализации функций мозга. Соматосенсорная область коры имеет такое же отношение к осязанию и проприоцепции, как стриарная кора — к зрению. Маунткасл показал, что эта область подразделяется на вертикально ориентированные зоны, внутри которых клетки чувствительны к прикосновению, и зоны, в которых клетки отвечают на сгибание в суставах или на приложение значительного давления к конечности. Так же как и в случае колонок глазодоминантности, ширина этих зон составляет примерно 0,5 мм. Однако еще не ясно, образуют ли эти зоны полосы, шахматный рисунок или же отдельные островки на общем фоне. Маунткасл назвал их колонками, и можно думать, что он мысленно представлял себе некую сотовидную структуру. Теперь мы уже знаем, что для зрительной коры более подходящим был бы термин пластина или слэб (slab). Однако введенную терминологию очень трудно изменить, поэтому лучше всего, наверное, сохранить прежний термин, несмотря на его недостатки. Сегодня мы говорим о колончатой организации, когда некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры. По причинам, которые будут ясны из следующей главы, мы обычно не применяем этот термин, когда речь идет о топографическом отображении, т.е. о проекции расположения рецептивных полей на сетчатке или на поверхности тела.

Ориентационные колонки

Регистрируя реакции нейронов стриарной коры, мы уже в самом начале заметили, что всякий раз, когда одновременно отводится активность двух клеток, эти клетки оказываются сходными не только по глазодоминантности, но и по оптимальной ориентации стимула. Возникает вопрос: однотипны ли соседние клетки и по всем другим свойствам? Ответ будет отрицательным. Как я уже упоминал, положения рецептивных полей в большинстве случаев не вполне совпадают, хотя поля обычно перекрываются; дирекциональная чувствительность часто бывает противоположной, или же у одной клетки она может быть хорошо выражена, а у другой ее может не быть вовсе. В слоях 2 и 3, где встречаются клетки, реагирующие на концы линий, одна клетка может не проявлять совсем этого свойства, а соседняя — обладать им в полной мере. С другой стороны, две соседние клетки очень редко обнаруживают явное различие в оптимальной ориентации стимула или противоположную глазодоминантность.

Предпочитаемая ориентация, так же как и глазодоминантность, остается неизменной при прохождении электрода вертикально сквозь всю толщу коры. Как уже говорилось, в слое 4Cβ клетки вообще не обладают избирательностью к ориентации стимула; но как только мы доходим до слоя 5, у клеток выявляется сильно выраженная настройка на определенную ориентацию, причем оптимальная ориентация здесь та же, что была выше слоя 4. Если теперь вынуть электрод и ввести его в каком-нибудь другом месте, то общая картина останется прежней, только ориентация скорее всего будет уже другой. Таким образом, кора разбита на узкие участки с постоянной предпочтительной ориентацией, которые идут от поверхности коры до белого вещества, но прерываются в слое 4, где клетки не обладают ориентационной избирательностью.

Если же, наоборот, вводить электрод параллельно поверхности коры, то наблюдается удивительно закономерное изменение предпочитаемой ориентации — каждый раз, когда электрод перемещается на 0,05 мм (50 мкм), ориентация сдвигается в среднем на 10° по часовой стрелке или против часовой стрелки. Поэтому при продвижении электрода на 1 мм она обычно меняется на противоположную. Величины 50 мкм и 10° близки к пределу доступной ныне точности измерений, так что нельзя сказать определенно, меняется ли ориентация при смещении электрода непрерывно или же сдвигается скачками.

На рис. 80 и 81 представлена часть типичного эксперимента, в котором электрод продвигался в поле 17 в направлении, близком к горизонтальному. В этом опыте точки фиксации двух глаз на экране не вполне совпадали (из-за наркоза и введения вещества, расслабляющего мышцы) — расстояние между ними составляло около 2°. Цветные круги на рис. 86 примерно соответствуют размерам рецептивных полей (около 1° в диаметре), расположенных в 4° ниже и слева от центральных ямок (регистрировались ответы клеток правого полушария). Первая клетка, отмеченная номером 96, была бинокулярной, однако для следующей, 114, явно доминирующим оказался правый глаз. Затем идут клетки под номерами от 111 до 118 с доминированием левого глаза. Легко заметить, как регулярно изменяется ориентация в последовательности клеток, в данном случае в направлении против часовой стрелки. Если построить график зависимости ориентации от продвижения электрода (рис. 87), то все точки лягут на линию, близкую к прямой. Переход от одного глаза к другому не сопровождался никакими резкими изменениями ни в направлении сдвига ориентации, ни в наклоне линии на графике. Согласно нашей интерпретации, это означает, что между двумя системами группировки — по глазодоминантности и по ориентации стимула — нет тесной связи. Это выглядит так, как если бы кора размечалась двумя совершенно независимыми способами.

Рис. 80. Если ввести микроэлектрод в поле 17 коры макака очень наклонно, выявляется весьма регулярное изменение ориентационной избирательности (в данном случае исследованы 23 соседние клетки).

Рис. 81. Графическое представление результатов, отображенных на рис. 80. Это график зависимости оптимальной ориентации стимула (в угловых градусах) от расстояния, пройденного микроэлектродом. (Поскольку электрод вводился почти параллельно поверхности коры, длина проходки почти такая же, как соответствующее расстояние на поверхности коры). В этом эксперименте полный поворот ориентации стимула на 180° происходил на пути в 0,7 мм.

1 ... 29 30 31 32 33 34 35 36 37 ... 65
Перейти на страницу:
На этой странице вы можете бесплатно скачать Глаз, мозг, зрение - Дэвид Хьюбел торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит