Респираторная поддержка при анестезии, реанимации и интенсивной терапии - Анатолий Левшанков
Шрифт:
Интервал:
Закладка:
Наиболее информативным показателем, характеризующим объем альвеолярной вентиляции, является концентрация (парциальное давление) углекислого газа в конечно-выдыхаемом воздухе – FETCO2 (PETCO2).
При отсутствии нарушения вентиляции (снижения или увеличения объема альвеолярной вентиляции) PETCO2 почти равно парциальному давлению углекислого газа в альвеолярном воздухе (PАCO2), которое лишь на 1 мм рт. ст. меньше, чем парциальное давление CO2 в артериальной крови (PаCO2). Однако при нарушении вентиляции между ними может быть существенная разница.
При нормальной альвеолярной вентиляции в условиях спонтанного дыхания организм поддерживает постоянство состава альвеолярного воздуха, поддерживая парциальное давление O2 в альвеолярном воздухе (РАО2) на уровне 90 – 110 мм рт. ст., а РЕТСО2 – 34 – 44 мм рт. ст. При изменении объема вентиляции РЕТСО2 изменяется быстрее, чем РаСО2. При быстром увеличении объема вентиляции (например, во время искусственной вентиляции лeгких) РАСО2 уменьшается гораздо быстрее, чем в крови. В норме артерио-альвеолярная разность парциального давления СО2 – (а–А)рСО2 составляет около 1 мм рт. ст. При гипервентиляции она увеличивается, а при быстро нарастающей гиповентиляции может иметь отрицательное значение.
FETCO2 (PETCO2) можно легко и быстро определить по капнограмме (рис. 1.3) с помощью капнографа. В норме FETCO2 = = 4,9 – 6,4 об.% (PETCO2 = 34 – 44 мм рт. ст.). Гипервентиляция уменьшает величину этого показателя, вызывает гипокапнию (FETCO2 < 4,9 об.%, PETCO2 < 34 мм рт. ст.), что может привести к развитию дыхательного алкалоза. Гиповентиляция, наоборот, вызывает гиперкапнию (FETCO2 > 6,4 об.%, PETCO2 > 44 мм рт. ст.) с развитием дыхательного ацидоза.
В поддержании эффективной вентиляции имеет большое значение ее равномерность. Вентиляция всех участков здоровых легких неодинакова. Основания легких, имея меньший исходный альвеолярный объем и большую растяжимость, при вдохе расширяются сильнее, чем верхушки. Поэтому нижние отделы легких вентилируются лучше верхних. Однако в норме неравномерность вентиляции легких незначительная. При патологии (бронхоспазм, нарушение региональной проходимости дыхательных путей) неравномерность вентиляции резко возрастает и при дыхании воздухом даже в условиях избыточной минутной вентиляции легких могут возникнуть нарушения оксигенации в легких, развиться гипоксемия.
Рис. 1.3. Капнограммы в норме и при различных патологических состояниях
Наиболее информативным показателем, характеризующим степень неравномерности вентиляции, является угол наклона альвеолярного плато капнограммы (СО2).
В норме ∠ СО2 составляет 3 – 7°, при астматическом статусе он может возрастать до 60° и более, так как резко нарушается равномерность вентиляции.
Таким образом, капнография позволяет быстро оценивать эффективность вентиляции, ее объем и равномерность, она является одним из методов стандарта минимального мониторинга во время анестезии и интенсивной терапии.
Кровоток в легких (Qc) в значительной степени отличается от кровотока в большом круге кровообращения:
• среднее давление в легочной артерии (15 мм рт. ст.) в 6 раз ниже, чем в артериях большого круга (100 мм рт. ст.);
• систолическое давление в легочном стволе составляет около 25 мм рт. ст.; оно имеет ярко выраженный пульсирующий характер;
• разность давления между началом и концом системного кровообращения (100 мм рт. ст. в аорте минус 2 в правом предсердии равно 98) в 10 раз выше, чем в легочном кровообращении (15 мм рт. ст. в легочной артерии минус 5 мм рт. ст. в левом предсердии равно 10);
• так как кровоток в обоих кругах практически одинаков, сопротивление в легочных сосудах в 10 раз меньше, чем в системных: [(15 мм рт. ст. – 5ммрт.ст.) / 6 л/мин легочного кровотока = 1,7 мм рт. ст. /л ⋅мин– 1];
• сопротивление легочных сосудов снижается при повышении внутрисосудистого давления в результате вовлечения (открытие новых сосудов) и расширения (увеличения просвета) сосудов, при расслаблении гладких мышц сосудов под воздействием ацетилхолина, изопротеренола;
• сопротивление легочных сосудов возрастает при низком объеме легких (внутриальвеолярные сосуды сужены) и больших объемах (капилляры растянуты и их просвет уменьшен), при сокращении гладких мышц сосудов под воздействием гистамина, серотонина, норадреналина, снижении парциального давления O2 в артериальной крови – РаО2 (особенно ниже 70 мм рт. ст.), низком рН крови, возбуждении симпатических нервов;
•высокое сопротивление в большом круге, обусловленное в значительной степени артериолами с их мощными гладкомышечными слоями, регулирует местный кровоток в различных органах.
Задача правого сердца – обеспечить подъем крови до верхушек легких и эффективный легочный газообмен, а левого – регулировать доставку крови к различным органам, перераспределять ее.
У человека в вертикальном положении легочный кровоток почти линейно убывает в направлении снизу вверх. При умеренной физической нагрузке кровоток увеличивается и регионарные различиясглаживаются.Неравномерноераспределениелегочного кровотока объясняют различием гидростатического давления в кровеносных сосудах (между верхушкой и основанием легких она равна 23 мм рт. ст.).
Градиент гидростатического давления в кровеносных сосудах (30 см Н2О, или 23 мм рт. ст.), действующий на капилляры, обусловливает неравномерное распределение легочного кровотока. Кровоток в верхушках легких снижен и PA >Pa>Pv (зона 1 – альвеолярный кровоток хорошо вентилируемых альвеол), вентиляция преобладает над кровотоком, VA /Qc↑. В средних отделах легких (зона 2 – альвеолярный кровоток плохо вентилируемых альвеол) Pa > PA> Pv, кровоток преобладает над вентиляцией, VA /Qc↓. У основания легких (зона 3 – альвеолярный кровоток невентилируемых альвеол), VA /Qc=0, Pa>Pv>PA. В легком имеется также внеальвеолярный кровоток (бронхиальная, плевральная и тибезиева циркуляция), являющаяся истинным сосудистым шунтом справа-налево, который в норме составляет около 1 – 3 % общего кровотока.
При патологии (тяжелая травма, пневмония) распределение кровотока может нарушаться и шунт может значительно увеличиваться, что приводит к гипоксемии. Вследствие гипоксической легочной вазоконстрикции снижается эффект шунта. Однако при значительном увеличении шунта (50 % ударного объема, QT– ударный объем сердца), например при тяжелой травме, операцииналегком, ателектазах, обструкциидыхательныхпутей, гипоксемию не удается устранить даже вдыханием 100 % О2. В этих случаях гипоксемию следует устранять не только повышением FiO2,ноиснижениемшунтапутемрасправлениялегкого, проведения бронхоскопии, использования положительного давления в конце выдоха (РЕЕР), поворачивания больного, отсасывания мокроты и пр.
Диффузия газов. Перенос кислорода из альвеол в кровь и соединение его с гемоглобином происходит путем диффузии газа через альвеолярно-капиллярную мембрану и реакции О2 с гемоглобином. При этом преодолевается общее диффузионное сопротивление, состоящее из сопротивления мембраны и крови. Оба сопротивления примерно одинаковы, и их увеличение (например, при утолщении мембраны, снижении объема крови в легочных артериях) может уменьшить величину диффузионной способности легких. Перенос СО2 ограничен лишь диффузией. Перенос О2 ограничен перфузией и частично диффузией. Период, необходимый для уравновешивания парциального давления CO2 (РСО2) в капиллярах крови и альвеолах, в нормальных условиях примерно такой же, как и для О2: когда эритроцит проходит около 1/3 капилляра. Скорость диффузии в соответствии с законом Фика обратно пропорциональна толщине слоя и прямо пропорциональна площади диффузии, константе диффузии, разности парциальных давлений газа по обе стороны мембраны. Однако легкие имеют широкий диапазон компенсации, и нарушение диффузии редко бывает причиной гипоксемии, за исключением случаев альвеолярного фиброза или резкого утолщения альвеолярно-капиллярной мембраны (отек легких).
Вентиляционно-перфузионные отношения (VA/Qc). Гипоксемия может быть вызвана гиповентиляцией, нарушением диффузии, увеличением шунтирования крови, а также увеличением неравномерности вентиляционно-перфузионного отношения.
(!) В нормальных легких в направлении от верхушек к основанию объем вентиляции постепенно возрастает, но в меньшей степени, чем увеличивается кровоток.