Когда приходит ответ - Юрий Вебер
Шрифт:
Интервал:
Закладка:
Вдруг, словно очнувшись, он извлек из кармана сюртука записную книжку в мягкой коже и стал быстро усеивать ее страницы буквами и значками, будто воспылал намерением записать этот птичий язык.
А это и был особый язык, на котором пробовал сейчас писать Джордж Буль. И если бы посторонний заглянул в тот момент к нему в книжку, она наверняка показалась бы ему сплошной сеткой иероглифов — зашифрованные письмена. Так что лучше уж сразу сказать, что подразумевал Джордж Буль под своими буковками и значками.
Он писал крупно единицу, потом буквы x, y, z, вычитал их из единицы, потом писал знакомое из логики: «Все у суть x» или «Все x суть y»… А подразумевал под этим вот что.
Пусть символ единицы означает весь мир или всякий мыслимый класс предметов, которые действительно существуют. x, y, z… — члены разных классов или понятий. Скажем, x — класс людей, y — класс смертных.
Тогда предложение «Все люди смертны» можно выразить, как x = y.
Он писал символ 1 — x, имея в виду отрицание: класс не-икс, как говорят в логике. Ну, скажем, класс смертных и класс бессмертных. Вместе они образуют весь мир. Но весь мир, как уже условлено, есть единица. Стало быть, класс бессмертных, в противоположность всем смертным, можно обозначить 1 — x. Это неудобное обозначение будет потом заменено. Просто черточка или апостроф над буквой укажут отрицание: не-икс (x1), не-игрек (y1)…
Он соединял два каких-нибудь понятия в новое, третье, с помощью обычных для нашей речи связок «и», «или» и убеждался, что эту операцию тоже можно выразить символически. Класс вещей всех твердых (x) и вместе с тем всех стеклянных (у) можно обозначить x — y (умножение!). А класс вещей, принадлежащих к твердым или стеклянным, как x + y (сложение!).
Сложение, умножение. Не правда ли, совсем запахло математикой, алгеброй! Но дальше — больше.
Если мы имеем класс вещей всех твердых и всех стеклянных, то можно сказать и в обратном порядке: класс вещей всех стеклянных и всех твердых. Смысл не меняется! И Буль выводил правило: значит, в логике xy = yx. Позвольте, а ведь это известный алгебраический закон коммутативности.
То же и с понятиями, которые связаны словечком «или» — логическое сложение, как он назвал. Здесь также можно переставлять. Сумма-то не меняется. «Или стеклянный, или твердый» — все равно что «или твердый, или стеклянный». Опять тот же закон, как и в алгебре.
Об этом он задумывался не в первый раз — об отношениях в алгебре и отношениях в логике. Чутье подсказывало ему, что между ними есть что-то общее. И то, что созревало в уме, запросилось сегодня на бумагу как раз во время, казалось бы, самой безмятежной прогулки. Он торопился записать основной прием, который пришел ему в голову. Первые наброски… Может быть, за ними удастся нащупать какую-то систему. Перевод языка логики на язык алгебры.
Сидя в тени кустарника, Буль и пытался выстроить на страницах записной книжки эту своеобразную азбуку. Вначале было как будто просто. Все аналогии между алгеброй и логикой проступали с наглядной очевидностью. Но дальше усмотреть эту непосредственную связь становилось все труднее. Смысл уже прятался за разными операциями над буквами, обозначающими понятия — классы. Как разобраться в том, что класс всех богатых складывается с классом всех пронырливых и оба они помножаются еще на класс всех жадных? Можно ли так с этим обращаться?
И Буль доказывал сейчас; да, можно. Можно понятия заключать в скобки, а общие понятия, как общие множители в алгебре, выносить за скобки.
Удалось ему доказать и то, от чего его душа математика затрепетала в волнении. О боже, оказывается, отношения в логике подвержены и такому алгебраическому закону, как закон дистрибутивности!
Закон говорит: можно сложить две величины и потом помножить на третью, а можно сначала каждую из двух величин порознь помножить на третью и уж потом результаты умножения сложить между собой — получится то же самое. Как это громоздко в словах и как просто в символической записи. И Буль записал короткую строчку: х (u + v) = xu + xv. Один из самых фундаментальных законов, на которых выросла вся алгебра. А он подметил сейчас то же свойство и в логике.
Немалое открытие. Потому-то через сотню лет советский ученый-инженер Григорий Мартьянов и услышит из уст докладчика в университете то же многозначительное выражение: «Эта структура дистрибутивна…»
Но вот что стало вырисовываться в записной книжке Буля. За сходством между алгеброй и логикой последовали различия. Всем известно, одна величина, сложенная с такой же другой, дает удвоение. Коэффициент два. Икс плюс икс равно два икс. Это твердо, как сама земля.
А в логике? В логике Буль обнаруживал другое. Класс всего белого плюс класс всего белого все равно остается белым. Или класс всех мудрецов плюс опять же класс всех мудрецов будет все тем же классом мудрецов, а не то, что в два раза мудрее. Стало быть, в символической логике икс плюс икс уже не два икс, а просто все тот же самый икс. Складывайте хоть до второго пришествия. Отсюда вывод: в логике сложение двух одинаковых величин не дает удвоения. Алгебра, да не совсем та же алгебра. Она не знает коэффициентов.
Ну, а если помножить? Известно, что всякая величина, помноженная сама на себя, дает степень, возводится в квадрат. Дважды два — четыре. Икс на икс — икс в квадрате.
А в логике? В логике этого тоже не получалось. Белое на белое не становится белым в квадрате, а остается все тем же белым. Икс на икс не дает икс квадрат. Просто икс. Быть человеком и человеком все равно что быть человеком. Отсюда вывод: алгебра понятий не знает и возведения в степень. Алгебра без степеней!
Странная алгебра. И похожая и непохожая. Но все же алгебра, потому что в ней соблюдаются основные законы и потому что выражается она языком символов. Сокращенный птичий язык!
Сила алгебры в том и состоит, что она позволяет оперировать разными символами удобно и просто. И освобождает от необходимости думать на каждой ступеньке о том, что мы под этими знаками подразумеваем. Нет надобности разводить словесную канитель.
И лишь в конце цепочки операций мы получаем ответ, подставляя вместо значков их первоначальный смысл: предметы, расстояния, время и всякое такое. Что ни вложить в ее символы, все равно она, алгебра, перемелет, как на мельнице, все по-своему, по своим правилам. Сколько раз приходилось Булю задавать задачки ученикам: о бассейне с двумя трубами, о поездах, идущих навстречу, — и каждый раз за икс или игрек принималось другое. В разных случаях по-разному можно эти буковки толковать. Или, как говорят математики, придавать им различную интерпретацию. Важно только, чтобы подходило и чтобы первоначально обозначения имели определенный, конкретный смысл.
Булю и пришло на ум: а почему бы не истолковать алгебраические знаки как логические понятия и отношения между ними? Этакое своеобразное исчисление классов. Может быть, тогда станет легче решать и логические задачи, как облегчает алгебра решение всяких задач на вычисление. На страничках записной книжки он пробовал представить себе такую алгебру.
Да, это алгебра. Между ней и логикой поразительное сходство. Те же приемы, те же операции. Но есть и то, что отличает. Нет коэффициентов, нет степеней… Что ж, пусть это будет особая алгебра, и он, кажется, стоит на ее пороге. Гм, как же ее назвать?..
Забавной была все-таки фигура этого человека, сидящего в солнечный летний день под тенью кустарника, в светло-коричневом сюртуке, с высоким стоячим воротничком и пышным белым галстуком, повязанным на манер шарфа, с цилиндром, поставленным, как пюпитр, под записную книжку, в которую он уткнулся, забыв о прелестях природы, им же самим воспетой.
В такой позе и застал его приятель Чарльз, когда время подходило уже к тому, что надо было подумывать о возвращении.
4
Вечером, после ужина, когда они устроились при свечах в удобных кабинетных креслах, Джордж Буль выложил приятелю то, что было у него в записной книжке. Его метод алгебраической записи логических отношений. И подчинение основным законам. И, наконец, своеобразие такой алгебры без коэффициентов и степеней.
Буль говорил, все больше разжигаясь.
— Я помогу логике говорить на точном, твердом языке. Отличная дисциплина ума! Она приведет к новым открытиям. И ты знаешь, такая логика доставит немало удовольствия! — В его темном остром взгляде сверкал лихорадочный огонек.
И приятель терялся, не зная, что же сейчас перед ним говорит: дерзость ума или вдохновенное безумие?
Мысль можно передать в символах, — повторял Буль. — Знаки и буквы. И не в том главное, что понимать под буквами, а в том, чтобы найти правильные соотношения. Законы! — простирал он руку вверх. — Одни и те же формулы могут выражать разное: то обычные величины, то логические понятия — классы, а может быть, и целые предложения.