Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков
Шрифт:
Интервал:
Закладка:
Рассмотренный пример также помогает понять, почему результаты мыслительных процедур у людей и других животных часто бывают предельно дискретными (контрастными, категориальными).[26] Рак не может наполовину замереть, наполовину прыгнуть. Нужно выбрать одно из двух и затем уже действовать решительно, не оглядываясь на упущенные альтернативные возможности. Кроме того, как мы уже говорили, категоричность изначально заложена в саму структуру нейрона. Нейрон не может послать по аксону половину или семь восьмых потенциала действия. Все или ничего, ноль или единица, белое или черное. Надо ли удивляться, что люди так любят преувеличивать контрастность наблюдаемых различий между похожими объектами, что мы склонны искать (и, черт побери, находить!) четкие границы даже там, где их со всей очевидностью нет. Как, например, в эволюционном ряду, соединяющем нечеловеческих обезьян с человеком.
«Нет, вы все-таки скажите нам точно, в какой момент обезьяна стала человеком!» – вот типичное требование, предъявляемое публикой ученым, когда речь заходит об антропогенезе. Не скажу. Зато вы можете спросить у речного рака, на какие категории делятся хищники. Он вам объяснит, что хищники делятся на две категории, которые невозможно спутать и между которыми вообще нет ничего общего. Есть медленные хищники – от них нужно прыгать. Есть быстрые хищники – от них не убежишь, нужно замирать. Вот и все. Переходных форм не существует. Для такой логики достаточно пары нейронов. Для иной – часто не хватает и ста миллиардов.
Электромеханические устройства на мысленном управлении
Поскольку мысли материальны и складываются из комбинаций нервных импульсов, то нет никаких физических запретов на создание разнообразных инженерно-технических «приложений» к мозгу – устройств на мысленном управлении. Собственно, все тело животного представляет собой именно такое устройство. Но нам, конечно, хотелось бы получить более наглядную демонстрацию. Что-нибудь из металла и пластика, пожалуйста. С электромоторчиками и шестеренками – и чтобы мозг всем этим мог напрямую управлять.
Если бы подобные проекты нужны были только для убеждения упертых идеалистов, игра не стоила бы свеч. Но они нужны не только для этого. Разработка протезов, которыми человек мог бы управлять точно так же, как настоящими конечностями, при помощи мозговых импульсов, является одной из актуальных задач медицины. В последнее время в этой области наблюдается значительный прогресс. И люди, и другие обезьяны уже могут – при посредстве несложных электронных устройств – мысленно управлять движением курсора на экране компьютера. Но управлять курсором куда проще, чем пользоваться таким сложным прибором, как рука, в настоящем трехмерном пространстве.
В 2008 году группа американских нейробиологов, медиков и робототехников сообщила о сенсационном результате: им удалось научить двух макак резусов брать пищу и отправлять ее в рот при помощи механической руки с мысленным управлением (Velliste et al., 2008).
Схема эксперимента. Мозговые импульсы подвергаются компьютерной обработке, и на их основе генерируются сигналы, управляющие движением механической руки. Собственные руки обезьяны зафиксированы в горизонтальных трубках. По рисунку из Velliste et al., 2008.
В экспериментах использовалась искусственная рука, по своим механическим характеристикам близкая к настоящей. У нее пять степеней свободы: она может двигаться в плечевом суставе вверх-вниз, вправо-влево и вращаться вокруг своей оси (три степени свободы), в локтевом суставе она может только сгибаться-разгибаться (четвертая степень свободы); кроме того, она снабжена хватающей «кистью» в виде клешни, которая может сжиматься и разжиматься (пятая степень свободы). Все движения осуществляются при помощи моторчиков с компьютерным управлением.
Ученые вживили двум макакам по 96 электродов в участок моторной коры, управляющий движениями плеча и предплечья. Эти электроды у двух обезьян были немного по-разному распределены. Попадание электродов в те или иные конкретные точки коры было отчасти случайным, и уж во всяком случае никто не мог знать заранее, какие из электродов будут воспринимать мозговые команды, скажем, о подъеме руки, а какие – о сгибании локтя. Это предстояло выяснить в ходе дальнейших экспериментов. Долгий курс обучения должны были пройти не только обезьяны, но и компьютерная программа, интерпретирующая мозговые сигналы и преобразующая их в команды для управления механической рукой.
На начальном этапе обезьян учили управлять рукой при помощи джойстика с кнопкой (кнопка предназначалась для открывания и закрывания клешни). Кроме того, обезьяна просто смотрела на автоматические движения руки, которая брала пищу из разных мест и подносила ее ко рту подопытной (известно, что вкусная пища – чуть ли не единственный стимул, побуждающий обезьяну в лабораторных условиях быть внимательной и чему-то учиться). Пока механическая рука двигалась, а обезьяна на нее смотрела, компьютер регистрировал сигналы, поступающие от 96 электродов, и подвергал их статистической обработке. Сигналы от некоторых датчиков не коррелировали с движениями руки, и эти датчики впоследствии не учитывались. Для остальных электродов компьютер определял, какие движения искусственной руки сопровождаются наиболее интенсивными (частыми) нервными импульсами. Так были выявлены электроды (и соответствующие точки мозга), которые избирательно реагируют на те или иные движения (вверх-вниз, вперед-назад и вправо-влево), а также на сжимание и разжимание пальцев. Соответствующий «рисунок» возбуждения нейронов интерпретировался как команда, посылаемая мозгом. Например, если данные десяти датчиков регистрировали наиболее сильные сигналы при подъеме руки, то в дальнейшем, когда управление рукой передавали обезьяне, сигналы от этих десяти датчиков компьютер преобразовывал в команду «поднять руку».
После этого этапа предварительного обучения исследователи попытались сразу передать обезьянам всю власть над механической рукой, но ничего не вышло: обезьяны не справились с управлением. Тогда пришлось пойти более долгим путем постепенной передачи контроля от «автопилота» обезьяне. При этом училась не только обезьяна, но и компьютер: интерпретация нервных импульсов постоянно уточнялась и подстраивалась к текущему состоянию обезьяньего мозга. Как выяснилось, такая подстройка должна осуществляться ежедневно, потому что компьютерная интерпретация мозговых сигналов, основанная на вчерашних экспериментах, сегодня может для той же самой обезьяны оказаться недостаточно точной. Кроме того, импульсы, генерируемые мозгом во время пассивного наблюдения за автоматически движущейся рукой, оказались не совсем идентичными тем, что генерируются при непосредственном мысленном управлении искусственной конечностью.
Задача, которую обезьяна должна была выполнить при помощи искусственной руки, изо дня в день была одна и та же: нужно было взять пищу (пастилу или ягоду), которая появлялась в разных местах в пределах досягаемости, и поднести ее ко рту (а потом, разумеется, съесть, но это уже делалось без помощи технических средств). Самая трудная часть задания состояла в том, чтобы поднести раскрытую клешню точно к пище. Для этого