Теория относительности для миллионов - Гарднер Мартин
Шрифт:
Интервал:
Закладка:
Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.
До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!
Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.
Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?
Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.
Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:
Юная леди по имени Кэт
Двигалась много быстрее, чем свет.
Но попадала всегда не туда:
Быстро помчишься — придешь во вчера.
Перевод А. И. Базя
Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.
Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.
Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.
Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.
Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.
В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.
Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.
Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.
Как эта разница сказывается на парадоксе?
Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.
Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.
С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве — времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.