Теория относительности для миллионов - Гарднер Мартин
Шрифт:
Интервал:
Закладка:
Однако если явления инерции относительны, но не по отношению к такой структуре, а лишь по отношению к структуре, созданной звездами, то относительность выступает в своем наиболее чистом виде.
Деннис Скьяма, английский космолог, идя по пути Маха, создал остроумную теорию. Ее занимательное изложение дано в его популярной книге «Единство Вселенной». Согласно Скьяма, инерционные явления, возникающие при вращении и ускорении, являются результатом движения по отношению ко всему веществу во Вселенной. Если это так, то измерения инерции дают метод оценки полного количества вещества во Вселенной! Уравнения Скьяма показывают, что влияние ближайших звезд на инерцию поразительно мало. Все звезды в нашей Галактике, по его расчету, дают примерно лишь одну десятимиллионную часть силы инерции на Земле.
Главная часть этой силы создается далекими галактиками. Скьяма оценил, что 80 процентов силы инерции являются результатом движения относительно галактик, настолько удаленных, что их еще не видно в наших телескопах!
Во времена Маха не было известно, что кроме нашей Галактики существуют и другие галактики, не было известно даже, что наша Галактика вращается. Сейчас астрономы знают, что центробежные силы, возникающие при вращении, очень сильно сплющивают нашу Галактику.
С точки зрения Маха, это сплющивание могло произойти только в том случае, если вне нашей Галактики существуют огромные массы вещества. Знай Мах о явлениях инерции при вращении нашей Галактики, указывает Скьяма, он мог бы предсказать существование и других галактик за пятьдесят лет до их открытия.
Необычность точки зрения Скьяма станет более наглядной со следующей иллюстрацией. Однажды я купил головоломку, представляющую собой квадратную коробочку со стеклянной крышкой, внутри которой было четыре стальных шарика. Каждый шарик располагался в желобке, шедшем от центра квадрата к одному из его углов. Задача состояла в том, чтобы загнать одновременно все четыре шарика в углы. Единственный способ сделать это — положить головоломку на стол и привести ее во вращение. Центробежная сила — вот что помогает решить эту головоломку. Если Скьяма прав, то эту головоломку нельзя было бы разгадать подобным способом, не будь миллиардов галактик на громадных расстояниях от нашей.
Будет ли теория относительности развиваться по направлению, указанному Махом и Скьяма, или сохранится не зависящая от звезд структура пространства — времени? На это никто не может ответить. Если будет успешно развиваться теория поля, в которой элементарные частицы вещества можно будет понять как пространственно-временное поле, то звезды сами по себе станут всего лишь одним из проявлений такого поля. Вместо звезд, создающих структуру, структура будет создавать звезды. В настоящее время, однако, все это лишь предположения.
8. Парадокс близнецов
Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.
Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.
Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности — это печальное недоразумение.
« Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться», — писал Макмиллан в 1927 г. « За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех — превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу».
Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).
Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.
Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.
До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов — больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.
Допустим, что космонавт — один из близнецов — проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?
Ответ зависит от скорости движения корабля.
Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!