Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Бег за бесконечностью - Александр Потупа

Бег за бесконечностью - Александр Потупа

Читать онлайн Бег за бесконечностью - Александр Потупа

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 48
Перейти на страницу:

Но, возможно, самое любопытное состоит в том, что взрыв исследовательской активности буквально на наших глазах сметает глубоко укоренившееся представление о самой науке как о непоколебимом своде фундаментальных законов природы, огромном храме — хранилище неоспоримой истины. Эти, в общем-то, славные образы — типичное наследие старых добрых «медленных» времен, когда по одним и тем же учебникам превосходили премудрость десятки и десятки студенческих поколений, а научные статьи не успевали безнадежно устаревать еще до выхода в свет; когда ученые были скорее жрецами-добровольцами, а не научными сотрудниками с годовыми, пятилетними и перспективными двадцатилетними планами работы.

Прорыв в мир частиц высоких энергий связан с формированием науки нового типа. Физика высоких энергий дала первый образец сверхбыстрого развития и в постановке основных задач, и в методах организации исследований. Этот блестящий взлет произошел в удивительно короткий срок благодаря счастливому сочетанию двух, быть может, важнейших человеческих качеств — неиссякаемой изобретательности и умения жертвовать сиюминутными интересами ради Будущего с большой буквы. Именно это и позволило перейти к созданию самых-самых (больших, сложных, дорогостоящих…) приборов для изучения микромира ускорителей заряженных частиц.

К концу 20-х — началу 30-х годов, когда помыслами физиков все сильней и сильней стали овладевать элементарные частицы и атомные ядра, выяснилось, что для серьезного движения вперед нужно срочно менять оружие. «Даровые» радиоактивные источники, которые верой и правдой служили науке много лет, не обеспечивали новых экспериментальных потребностей. Во-первых, они давали частицы с энергией, строго регламентированной законами радиоактивного распада. Во-вторых, эта энергия была не особенно велика — в лучшем случае порядка 10 МэВ. Кроме того, по ряду соображений для исследования ядер было выгодно использовать не альфа-частицы, а протоны.

Перед тем как перейти на долгосрочную и плодотворную работу в химии, биологии, геофизике и других областях науки, буквально «под занавес» радиоактивные источники сыграли одну из лучших своих ролей. С их помощью в 1932 году Дж. Чэдвик открыл долгожданную нейтральную составляющую атомных ядер — нейтрон, предсказанную его учителем Э. Резерфордом. Это открытие завершило длинную серию работ по установлению природы странного излучения, которое возникало в результате бомбардировки бериллия альфа-частицами и обладало высокой проникающей способностью. Дж. Чэдвик доказал, что при захвате альфа-частицы ядром бериллия образуется ядро углерода и испускается нейтральная частица, которая входила в состав одного из сталкивающихся ядер.

Экспериментальное обнаружение нейтрона позволило разработать простейшую составную модель ядра, о которой мы уже упоминали, вызвать искусственное деление тяжелых ядер и, наконец, в 1942 году запустить первую действующую модель ядерного реактора. Именно в связи с этой впечатляющей цепочкой завоеваний 30-е годы стали скорее «ядерными», чем «элементарно-частичными». Если когда-нибудь благодарные физики-ядерщики пожелают поставить монумент в честь одного из объектов своих исследований, то, на мой взгляд, это должна быть модель ядра гелия — великой альфа-частицы. Еще бы! Открытие атомных ядер в резерфордовских экспериментах, расшифровка протон-нейтронной структуры ядра произошли с ее помощью. Альфа-радиоактивность открыла путь в ядерный мир!

В высшей степени символично, что 1932 год оказался моментом передачи эстафеты — блестящий нейтронный финиш радиоактивных источников и практически сразу же мощный позитронный старт космических лучей. Старт был действительно превосходным, но многоопытные тренеры уже понимали, какие дистанции Доступны для космических бегунов, а какие нет.

Космические лучи представлялись идеальным инструментом исследований по двум соображениям: их получение не требовало ни малейших расходов, и они обладали фантастически широким спектром энергий. Зато работа с ними основывалась на не слишком приятном принципе «ждать у моря погоды» и требовала невероятного терпения. Космическая частица с нужной энергией могла попасть в регистрирующее устройство сегодня, завтра, через год. Предположим, что небеса все-таки «являли милость», но это было одно, два, от силы десяток-другой событий. Что с ними можно сделать? Можно увидеть следы «неведомых зверей» — открыть новые частицы, можно зафиксировать новый тип процессов; в общем, установить уникальные факты существования чего-либо. Но получить более детальную информацию о поведении той же самой вновь открытой частицы в различных реакциях и при различных энергиях оказывается чрезвычайно сложным и слишком длительным делом. Ведь необходимо набирать сотни тысяч событий. В этом плане космические лучи могли оказать лишь одну услугу — дать предварительный сигнал о каких-то новых закономерностях.

Именно такова их основная специальность в настоящее время; и надо отметить, что зарекомендовали они себя в этом деле с лучшей стороны. Если учесть, что сейчас в составе космических лучей зарегистрированы частицы с энергиями до 1021 электрон-вольт, а на ускорителях изучают реакции при энергиях частиц лишь до 1012 эВ, то становится ясно — им еще долго предстоит выполнять функции «стратегической разведки».

Все это неплохо — одним поставят памятник, другие уйдут в разведку. А кто же станет работать? Природа не позаботилась о достойной замене и не предложила ни одного естественного источника радиации, который помог бы обойти все наметившиеся трудности. Но физики уже представляли себе путь, по которому следовало двигаться, — частицы должны ускоряться электрическим полем; в принципе так же, как и при получении катодных лучей (электронов с большими скоростями). Только электроны ускорялись разностью потенциалов всего в несколько тысяч электрон-вольт, а теперь нужны миллионы. Следовательно, необходимо решать электротехнические проблемы с созданием высоковольтных установок…

Между этими ранними идеями и действующими установками лежат годы трудных поисков, великолепные находки и тягостные сомнения, радужные и пессимистические прогнозы.

1918 год. Петроград. Город борется за новую жизнь. Трудно с хлебом, трудно с работой, по ночам на вымерзших, пустынных улицах нет-нет и вспыхивают короткие ожесточенные перестрелки… Но и здесь, в центре великого социального потрясения, с невероятным напряжением сил идет битва за будущее русской науки, закладывается основа уверенного взлета. И одним из первых пунктов программы научного развития стала организация радиевого отделения при Радиологическом и рентгенологическом институте.

Огромную роль в создании нового отдела сыграл энтузиазм тридцатилетнего Л. Мысовского, который уже несколько лет успешно занимался проблемами новой физики. Фактически он был первым и едва ли не единственным физиком России, приступившим к исследованиям радиоактивности в дореволюционное время. В начале 1922 года радиевое отделение преобразуется в знаменитый Радиевый институт, где были сконцентрированы работы с применением ядерных излучений в самых различных областях науки. Руководство физическим отделом этого института было поручено Л. Мысовскому. Летом этого же года он представил на заседание ученого совета доклад по своей совместной со студентом Петроградского электротехнического института В. Рукавишниковым работе, где была сформулирована идея использования генераторов высокого напряжения для ускорения альфа-частиц до нескольких миллионов электрон-вольт.

Практически в это же время Патентное ведомство США рассматривало оригинальную заявку, поступившую из штата Пенсильвания. В ней молодой сотрудник исследовательской лаборатории фирмы Вестингауз Дж. Слепян предлагал несколько иную конструкцию установки для ускорения заряженных частиц, так называемый индукционный ускоритель электронов.

Так общие идеи превратились в конкретные, осязаемые проекты. Но лишь последующее десятилетие перевело интересные предложения на язык действующих моделей. В 1929 году в Принстонском университете заработал первый электростатический генератор Р. Ван де Граафа с ускоряющим напряжением до 80 тысяч вольт. Через два года на третьем варианте его установки было достигнуто напряжение в полтора миллиона вольт!

Еще через год английские физики Дж. Кокрофт и Э. Уолтон коротенькой заметкой в журнале «Нейче» («Природа») оповещают научную общественность о первой впечатляющей победе ускорительной эры. С помощью двухкаскадного генератора напряжения они создали пучок протонов с энергией 710 тысяч электрон-вольт и обстреляли литиевую мишень. В результате столкновения протона с ядром лития образовывались две энергичные альфа-частицы, то есть наблюдалась реакция расщепления ядра. Таким образом, искусственная радиоактивность была получена при помощи искусственных же источников быстрых частиц!

1 ... 16 17 18 19 20 21 22 23 24 ... 48
Перейти на страницу:
На этой странице вы можете бесплатно скачать Бег за бесконечностью - Александр Потупа торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит