Род человеческий - А. Барнетт
Шрифт:
Интервал:
Закладка:
Помимо непосредственных данных такого рода, общеизвестны косвенные, но не менее показательные свидетельства из области сравнительной анатомии. По сравнению с мозгом рыбы относительный размер мозга крысы (имеется в виду отношение веса головного мозга к весу тела) — этого типичного млекопитающего — больше. Соответственно и поведение ее неизмеримо сложнее; в частности, в экспериментальных условиях крыса выполняет гораздо более трудные задачи. Еще большее увеличение мозга, как мы уже отмечали в предыдущей главе, наблюдается в последовательном ряду приматов — от обезьян через человекообразных к человеку. Действительно, относительный размер мозга человека огромен. В соответствии с этими структурными отличиями возрастает сложность поведения.
Относительный размер почти всех отделов человеческого мозга велик; особенно это заметно на отделах, не связанных непосредственно с органами чувств или мышцами, — на лобных, теменных и височных долях полушарий мозга. Опыты по изучению локализации функций в мозге показали, что эти области связаны с высшими психическими функциями — памятью, способностью выполнять очень сложные задания.
Рис. 30. Относительный размер различных отделов мозга.
Мозг человека не только относительно и абсолютно превышает мозг остальных приматов: он гораздо сложнее. Не закрашенные черной краской отделы мозга связаны с «высшими» психическими функциями. Указана локализация центров некоторых общих функций. Масштаб рисунков не выдержан.
Более подробно на этом вопросе мы остановимся позднее, а сейчас, прежде чем перейти к функциям мозга, попытаемся внести ясность в один небольшой вопрос относительно размера мозга. Известно, что размеры мозга отдельных людей самые различные; если средний объем мозговой части мужского черепа колеблется в пределах 1300–1500 кубических сантиметров, то его нормальный размер у отдельных индивидуумов может быть от 1050 до 1800 кубических сантиметров. Казалось бы, эти цифры должны были навести ученых на мысль о возможной связи между размером мозга и умственными способностями (так называемой интеллектуальностью) внутри человеческого вида. На самом же деле этого нет: в противном случае самые высокие умственные способности были бы у эскимосов, так как, говорят, у них наибольший размер мозга[25]. Как мы увидим позднее, вопрос об измерении умственных способностей очень спорен, тем не менее изучение объема мозговой части черепа в зависимости от коэффициента интеллектуальности, измеренного в специальных тестах, показало почти полное отсутствие связи между ними. Зарегистрировано немало случаев умственно отсталых людей с размером мозга выше среднего и людей с выдающимися умственными способностями при сравнительно небольшом мозге. Более того, у неандертальца, создавшего лишь примитивные каменные орудия, средний объем черепа был выше, чем у современного человека. Знай мы внутреннее строение его мозга, мы могли бы выяснить, почему же в конце концов неандертальцы были полностью вытеснены современными людьми[26]. Помимо размера, мозг человека имеет чрезвычайно сложную микроскопическую структуру, которая дает широкие возможности для индивидуальной изменчивости. Выявить ее, изучая только внешнее строение мозга, невозможно.
Механизм действия нервной системы
Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в сетчатке глаза. Слой чувствительных к изменению освещенности клеток сетчатки связан с нервными волокнами, которые оканчиваются в мозгу и при возбуждении переносят импульсы (или «сообщения») в мозг. Там эти импульсы возбуждают клетки, волокна которых связаны с мышцами, окружающими зрачок. Импульсы, приносимые уже этими волокнами, вызывают сокращение мышц, что приводит к сужению зрачка.
Такая простая ответная реакция получила название безусловного рефлекса. Безусловный рефлекс отличается большим постоянством: в ответ на одно и то же раздражение в любых условиях возникает одна и та же физиологическая реакция. Не зависит он и от индивидуального опыта человека. К безусловным рефлексам относятся также слюноотделение (выделение слюны при попадании пищи в рот), сухожильные рефлексы, например коленный. Наряду со зрачковым, коленный рефлекс играет немалую роль в распознавании ряда заболеваний центральной нервной системы.
В образовании рефлекса участвуют орган чувств, или рецептор (например, в зрачковом рефлексе — сетчатка), чувствительное нервное волокно, по которому импульсы идут к воспринимающим клеткам центральной нервной системы, двигательные нервные клетки и их волокна, по которым импульсы идут от центральной нервной системы, и рабочий орган (мышца или железа), который, собственно, и выполняет ответную реакцию.
При детальном изучении механизм безусловного рефлекса оказывается довольно сложным. Мы можем сравнить действие нервной системы с электрическими приспособлениями типа телефона, имеющими внешнее сходство со связями в нервной системе. То, что сходство это только внешнее, можно доказать, сославшись еще раз на пример с действием света на глаз. Предположим, что неожиданно для человека включили очень яркий свет, — ответная реакция будет уже другой: помимо того, что сократится зрачок, еще и зажмурятся глаза, возможно, повернется в сторону голова, а руки непроизвольно поднимутся и прикроют глаза. В этом случае возбудилось большее число чувствительных нервных волокон, а следовательно, и число импульсов, поступивших в центральную нервную систему, будет бóльшим, чем в первом примере; возбуждение захватило больший участок мозга, и в действие включилось большее число мышц (не только мышцы зрачка).
Рис. 31. Схема рефлекторной дуги.
Чувствительные нервные клетки от органа кожной чувствительности передают возбуждение через вставочные клетки центральной нервной системы двигательным клеткам, вызывающим мышечное сокращение. Ответные реакции включают на каждой стадии сотни и тысячи нервных клеток, связанных обычно гораздо более сложным образом, чем показано на этом рисунке.
При повторных применениях необычно сильного раздражителя ответная реакция усложняется: человек либо попытается уклониться от этого испытания, либо войдет с уже зажмуренными глазами, либо наденет темные очки. Вследствие приобретенного опыта его поведение изменится. Процесс научения показывает, что не все связи в центральной нервной системе фиксированы; они должны быть очень подвижными и постоянно меняться на протяжении жизни, по крайней мере в деталях. Это как бы телефонная система, наращивающая в зависимости от обстоятельств новые провода.
Мы только теперь начинаем постепенно узнавать о способности нервной системы к образованию новых связей. Вызывает интерес предположение, что это в одинаковой степени свойственно как головному, так и спинному мозгу, ибо последний состоит только из пучков волокон, проводящих импульсы к головному мозгу или от него, и тел нервных клеток, образующих рефлекторные центры, связанные с безусловными рефлексами. Однако в последнее время в результате тщательных экспериментов ученые установили, что у животных, например у кошки, повторное раздражение чувствительных нервов, участвующих в такого рода рефлексах, вызывает усиление ответной реакции, то есть увеличение мышечных движений. Эта усиленная ответная реакция, несомненно, зависит от закрепления связи между чувствительными и двигательными нервными клетками в спинном мозге. Как показали микрохимические исследования недавних лет, тонкие процессы в нервных клетках, благодаря которым происходит передача нервных импульсов от одной клетки к другой, при повторном употреблении усиливаются и тем самым становятся более эффективными. Установлено также, что неупотребление приводит к ослаблению функции. Однако изменения в типе ответа, как в условном рефлексе, в данном случае не происходят, а лишь усиливается уже существующая ответная реакция. Предполагают, что сходные изменения имеют место и в нервных клетках головного мозга, особенно в тех его областях, которые связаны с научением. Появление новых связей здесь может сильно повлиять на поведение. Другими словами, эти микроскопические изменения, возможно, являются частью химической основы памяти.
Рис. 32. Синапс.
Показаны мельчайшие окончания двух нервных клеток на теле третьей клетки — так называемый синапс. Большинство нервных клеток в центральной нервной системе имеют синаптические связи с сотнями других.