Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Математика » Музыка сфер. Астрономия и математика - Рос Роза Мария

Музыка сфер. Астрономия и математика - Рос Роза Мария

Читать онлайн Музыка сфер. Астрономия и математика - Рос Роза Мария

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:

Теперь, когда мы определили параллели и меридианы, установить положение точки земной поверхности очень просто — достаточно указать, какая параллель и какой меридиан пересекаются в этой точке, и выразить данные с помощью географических координат — широты и долготы. Широта — это угол между экватором и параллелью точки, где находится наблюдатель, измеренный вдоль меридиана, проходящего через рассматриваемую точку. Широта измеряется в градусах и отсчитывается от 0 до 90° в обе стороны от экватора. Долгота также измеряется в градусах (от 0 до 180° в обе стороны) и отсчитывается вдоль экватора от нулевого меридиана до меридиана рассматриваемой точки. Долготу часто выражают в часах, минутах и секундах. Чтобы перевести углы в единицы времени, нужно лишь учесть, что 24 часа соответствуют 360°, следовательно, 1 час соответствует 15°.

Как определить положение звёзд на небесной сфере

В прошлом люди считали небосвод хрустальной сферой, в её центре находилась Земля, а звёзды были прикреплены к сфере. Эта концепция давно устарела, однако астрономы по-прежнему говорят о «небесной сфере», так как это понятие соответствует нашим интуитивным представлениям о небосводе. И центром этой небесной сферы по-прежнему является Земля, но не потому, что она считается центром Вселенной, как утверждал Птолемей, а потому, что именно с поверхности Земли мы ведём астрономические наблюдения. Хотя мы знаем, что звёзды удалены от нас на разные расстояния, будем предполагать, что все они находятся на поверхности небесной сферы. Чтобы задать положение объекта, проще всего выбрать несколько окружностей и отложить от них два угла, как и в примере с определением координат на поверхности Земли.

* * *

АЛИСА В СТРАНЕ ЧУДЕС

Когда Алиса, героиня известной книги Льюиса Кэрролла, в погоне за кроликом проваливается в глубокий колодец, у неё появляется время поразмышлять о том, где же она находится (далее приведена цитата из первой главы «Алисы в стране чудес» под названием «Глава первая, в которой Алиса чуть не провалилась сквозь Землю»):

«И она всё летела: вниз, и вниз, и вниз! Неужели это никогда не кончится?

— Интересно, сколько я пролетела? — громко сказала Алиса. — Наверное, я уже где-нибудь около центра Земли! Ну да: как раз тысяч шесть километров или что-то в этом роде…

(Дело в том, что Алиса уже обучалась разным наукам и как раз недавно проходила что-то в этом роде; хотя сейчас был не самый лучший случай блеснуть своими познаниями — ведь, к сожалению, никто её не слушал, — она всегда была не прочь попрактиковаться.)

— Ну да, расстояние я определила правильно, — продолжала она. — Вот только интересно, на каких же я тогда параллелях и меридианах?

(Как видите, Алиса понятия не имела о том, что такое параллели и меридианы, — ей просто нравилось произносить такие красивые, длинные слова.)» [1]

Если колодец, как и все нормальные колодцы, был направлен к центру Земли, его широта и долгота не изменялись. Углы, определяющие положение Алисы в пространстве, оставались неизменными, менялось лишь её расстояние до центра Земли. Поэтому Алиса могла не беспокоиться.

* * *

Вариант первый: высота и азимут

Наиболее понятный способ определения координат на небесной сфере заключается в том, чтобы указать угол, определяющий высоту звезды над горизонтом, и угол между прямой «север-юг» и проекцией звезды на линию горизонта — азимут (см. следующий рисунок).

Горизонтальная система координат: высота (h) и азимут (а). В Европе азимуты отсчитываются с юга, как показано на рисунке, в Северной Америке — с севера. Зенит представляет собой точку пересечения небесной сферы и вертикальной линии, проходящей через точку, где находится наблюдатель. Иными словами, зенит — это самая высокая точка на небе, а надир — точка, противоположная зениту.

* * *

КАК ИЗМЕРИТЬ УГЛЫ ВРУЧНУЮ

Для измерения высоты и азимута звезды используется устройство под названием теодолит.

Однако существует очень простой, хотя и не слишком точный, способ измерения углов вручную. Если мы вытянем руку перед собой, то ладонь будет указывать интервал в 20°, кулак — 10°, большой палец — 2°, мизинец — 1°. Этот способ могут использовать и взрослые, и дети, так как размеры ладони человека увеличиваются пропорционально длине его руки.

Пример измерения углов на пальцах.

* * *

Вариант второй, более удобный: склонение и часовой угол

Определить положение звёзды с помощью азимута и высоты несложно, однако этот метод обладает серьёзным недостатком: координаты привязаны к точке, в которой находится наблюдатель, поэтому одна и та же звезда при наблюдении из Парижа и Лиссабона будет иметь разные координаты, так как линии горизонта в этих городах будут располагаться по-разному. Следовательно, эти данные астрономы не смогут использовать для обмена информацией о проведённых наблюдениях. Поэтому существует и другой способ определить положение звёзд. В нём используются координаты, напоминающие широту и долготу земной поверхности, которые могут применять астрономы в любой точке земного шара. В этом интуитивно понятном методе учитывается положение оси вращения Земли и считается, что небесная сфера вращается вокруг нас (по этой причине ось вращения Земли в Античности называлась осью мира). В действительности, конечно, всё обстоит наоборот: хотя нам кажется, что вращается небо, на самом деле это Земля вращается с запада на восток.

Рассмотрим плоскость, рассекающую небесную сферу перпендикулярно оси вращения, проходящей через центр Земли и небесной сферы. Эта плоскость пересечёт земную поверхность вдоль большого круга — земного экватора, а также небесную сферу — вдоль её большого круга, который называется небесным экватором. Второй аналогией с земными параллелями и меридианами будет небесный меридиан, проходящий через два полюса и расположенный в плоскости, перпендикулярной экватору. Так как все небесные меридианы, подобно земным, равны, нулевой меридиан можно выбрать произвольно. Выберем в качестве нулевого небесный меридиан, проходящий через точку, в которой находится Солнце в день весеннего равноденствия. Положение любой звезды и небесного тела определяется двумя углами: склонением и прямым восхождением, как показано на следующем рисунке. Склонение — это угол между экватором и звездой, отсчитываемый вдоль меридиана места (от 0 до 90° или от 0 до −90°). Прямое восхождение — это угол между точкой весеннего равноденствия и меридианом звезды, отсчитываемый вдоль небесного экватора. Иногда вместо прямого восхождения используется часовой угол, или угол, определяющий положение небесного тела относительно небесного меридиана точки, в которой находится наблюдатель.

Положение звёзды, заданное экваториальными (A, D) и часовыми координатами (Н, D).

Преимущество второй экваториальной системы координат (склонения и прямого восхождения) очевидно: эти координаты будут неизменными вне зависимости от положения наблюдателя. Кроме того, в них учитывается вращение Земли, что позволяет скорректировать вносимые им искажения. Как мы уже говорили, видимое вращение небесной сферы вызвано вращением Земли. Похожий эффект возникает, когда мы сидим в поезде и видим, как рядом с нами движется другой поезд: если не смотреть на перрон, то нельзя определить, какой из поездов на самом деле тронулся с места. Нужна точка отсчёта. Но если вместо двух поездов рассматривать Землю и небесную сферу, найти дополнительную точку отсчёта будет не так-то просто.

1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:
На этой странице вы можете бесплатно скачать Музыка сфер. Астрономия и математика - Рос Роза Мария торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит