Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков
Шрифт:
Интервал:
Закладка:
Когда мы воспринимаем что-нибудь – любую информацию из внешней или внутренней среды, – нервные импульсы пробегают по каким-то определенным путям в гигантской нейронной сети, которой является наш мозг. Логические схемы, составленные из множества нейронов, обрабатывают поступающие сигналы, обобщают их, раскладывают по полочкам. Например, зрительная информация – нервные импульсы, приходящие от фоторецепторов сетчатки глаза, – сначала сортируется по простым категориям: вертикальные линии, горизонтальные линии, данные о движении и т. д. Затем постепенно, в несколько этапов, передаваясь от одних групп нейронов другим, из этих элементов складывается целостный образ увиденного, «картинка», удобная модель реальности, с которой можно работать дальше. На основе хорошей, качественной картинки-модели[18] можно просчитать оптимальную тактику своего поведения, то есть последовательность нервных импульсов, которые нужно послать мышцам, чтобы совершить нужные телодвижения. Например, убежать как можно быстрее и дальше, если распознанная «картинка» идентифицирована как нечто опасное – скажем, крупный хищник. Физическая природа «картинки», как и всего остального, что происходит в нашей душе, – это определенный рисунок (паттерн) возбуждения нейронов, все те же нервные импульсы, пробегающие по определенным путям в сплетениях аксонов и дендритов. Чтобы надолго запомнить данную картинку – скажем, тигриную морду, выглянувшую из-за пальмы, – нужно просто усилить синаптическую проводимость вдоль всего пути следования импульсов, формирующих именно эту картинку. И тогда достаточно будет легкого напоминания – запах, шорох, пара полосок, желтый глаз, – и по проторенному пути сразу пробегут такие же нервные импульсы, как при первой встрече. Возникнет мысленный образ тигра.
Мы рождаемся не с кашей в голове. Мы рождаемся с нейронами мозга, уже каким-то образом соединенными между собой в громадную, сложнейшую сеть. Каким именно образом они соединятся в процессе эмбрионального развития, зависит от генов. Какие из бессчетного множества возможных путей для прохождения нервных импульсов будут от рождения более проторенными, чем другие, тоже зависит от генов. Из этого неизбежно следует, что по крайней мере некоторые наши знания вполне могут быть врожденными. Для того чтобы от рождения иметь в голове образ тигра – обладать врожденным знанием о том, как выглядит тигр, – нужно лишь одно. Нужно, чтобы отбор закрепил в нашем геноме такие мутации генов – регуляторов развития мозга, которые от рождения обеспечивали бы повышенную синаптическую проводимость вдоль того пути следования нервных импульсов, по которому они пробегали при встрече с тигром у наших предков, еще не имевших этого врожденного знания.
Разумеется, знания могут быть не полностью, а лишь отчасти врожденными. Это значит, что соответствующий нейронный маршрут будет от рождения проторен лишь отчасти, недостаточно сильно или не на всем протяжении. Тогда нужно будет немного «довести» врожденное полузнание при помощи обучения. Частичная врожденность, конечно, делает обучение гораздо более легким и быстрым.
По всей видимости, у людей действительно есть кое-какие врожденные «заготовки» зрительных образов: например, новорожденные дети иначе реагируют на вертикальный овал с большой буквой Т посередине (похоже на лицо), чем на другие геометрические фигуры. Удивительная легкость, с которой маленькие дети овладевают речью, тоже объясняется наличием некоего врожденного «полузнания», то есть предрасположенности к легкому усвоению знаний определенного рода.
Могут существовать и такие знания, которым очень трудно или даже вовсе невозможно научиться, потому что врожденная структура межнейронных связей не предусматривает такой возможности. Скажем, в вышеприведенном примере с аплизией мы приняли как данность, что модулирующий нейрон, возбуждающийся при ударе по хвосту, имеет аксонный отросток, контактирующий с окончанием сенсорного нейрона, реагирующего на прикосновение к сифону. А если бы такого отростка не было, если бы модулирующий нейрон не имел синаптических контактов с окончанием сенсорного нейрона? Или, иными словами, если бы врожденная структура нейронной сети аплизии не предусматривала возможности передачи сигнала от хвоста к окончанию сенсорного нейрона сифона? В таком случае аплизия оказалась бы не способной к данному виду обучения. Мы просто не смогли бы посредством ударов по хвосту научить ее выбрасывать чернила в ответ на прикосновение к сифону. Скорее всего, в этом случае мы сумели бы найти ударам по хвосту какую-то замену. Мы подобрали бы такое «обучающее воздействие», которое возбуждало бы нейроны, имеющие (в отличие от нейронов хвоста) синаптические контакты с окончаниями сенсорных нейронов сифона.
Нейроны мозга от рождения соединены между собой лишь каким-то одним способом из бесконечного числа возможных. Из этого следует, что любое животное, включая человека, чему-то научиться может, а чему-то нет. Одни науки даются нам легко, другие трудно. Абсолютно универсальных мозгов не бывает. Любой мозг специализирован, «заточен» под решение определенного – пусть и очень широкого – круга задач. Он принципиально не способен решать задачи, лежащие за пределами этого круга. Возможно, человеческий мозг более универсален, чем мозги других животных, но абсолютная универсальность – не более чем несбыточная мечта.
Нейроны соревнуются за право запоминать
Часто бывает так, что одни и те же важные сигналы, подлежащие запоминанию, принимаются одновременно очень многими нейронами. Нужно ли им всем участвовать в запоминании? На первый взгляд кажется, что это не слишком рационально. Ведь количество проторенных путей, которые может пропустить через себя один и тот же нейрон, ограничено – объем памяти не бесконечен. Сэкономить и записать важную информацию только в части задействованных нейронов – вроде бы неплохая идея. Как недавно выяснилось, именно это и происходит в мозге млекопитающих. Нейронам, воспринимающим одну и ту же достойную запоминания информацию, как-то удается договориться между собой, кто из них будет, а кто не будет отращивать себе новые отростки и синапсы.
Это явление описали канадские и американские нейробиологи, изучавшие формирование у лабораторных мышей условных рефлексов, связанных со страхом (Han et al., 2007). Простейшие рефлексы такого рода и у мышей, и у людей, и у всех прочих млекопитающих формируются в латеральной миндалине (ЛМ) – маленьком отделе мозга, отвечающем за реакции организма на всякие пугающие стимулы. Мышей приучали, что после того, как раздается определенный звук, их бьет током. В ответ на удар током мышь замирает: это стандартная реакция на испуг. Мыши – умные зверьки, их можно научить многому, и условные рефлексы у них формируются быстро. Обученные мыши замирают, едва заслышав звук, предвещающий опасность.
Ученые обнаружили, что сигнал от нейронов, воспринимающих звук, поступает примерно в 70% нейронов латеральной миндалины. Однако изменения, связанные с формированием долговременной памяти (разрастание синапсов и рост новых нервных окончаний), у обученных мышей происходят лишь в четвертой части этих нейронов (примерно у 18% нейронов ЛМ).
Ученые предположили, что между нейронами ЛМ, потенциально способными принять участие в формировании долговременной памяти, происходит своеобразное соревнование за право отрастить новые синапсы,