Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Читать онлайн Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 95
Перейти на страницу:

Чтобы рассказать об отношениях, в каких состояли между собой Гаусс и ТРПЧ, надо объяснить главную особенность Гаусса как математика. Он опубликовал намного меньше, чем написал. Из его переписки, сохранившихся неопубликованных статей и различного рода указаний, которые можно найти в опубликованных работах, видно, что он представил миру лишь часть всех сделанных им открытий. Теоремы и доказательства, которые прославили бы кого-нибудь другого, Гаусс оставлял заброшенными в своих личных дневниках.

Есть, наверное, две причины, объясняющие столь вопиющее небрежение. Одна — отсутствие честолюбия. Уравновешенный, самодостаточный и экономный человек, лишенный материальных благ в детстве и юности и так, по-видимому, и не приобретший к ним вкуса в зрелом возрасте, Гаусс не сильно нуждался в чьем бы то ни было одобрении и не стремился к продвижению по социальной лестнице. Другая причина — намного более распространенная среди математиков во все времена — состояла в перфекционизме. Гаусс не мог заставить себя представить свои результаты на суд других, пока эти результаты не окажутся отшлифованы до блеска и расставлены в безупречном логическом порядке. На его личной печати было изображено дерево с редко висящими плодами и девизом «Pauca sed matura» — «Немного, но спелые».

Как я сказал, перфекционизм — частая проблема среди математиков, из-за которой чтение опубликованных математических статей нередко превращается в очень тяжелое занятие. В одной из книг, получивших некоторую известность в современной психологической литературе, «Представление себя в повседневной жизни», Эрвинг Гоффман развивает теорию «социальной драматургии», согласно которой каждый результат деятельности, создаваемый «для внутреннего пользования» в беспорядке и не без вмешательства случайности, представляется «для внешней аудитории» в виде законченного и совершенного творения. Эту мысль хорошо иллюстрируют рестораны. Блюда, приготовленные среди стука и звона посуды, криков поваров в раскаленной кухне, предстают перед публикой как творения безупречно сервированные, на сверкающих тарелках, подаваемые проворными мурлыкающими официантами. В значительной своей части так же устроен и интеллектуальный труд. Вот что пишет Гоффман:

В тех взаимодействиях, где индивид представляет результат своей деятельности другим людям, он склонен обнародовать только конечный продукт; они же судят о нем на основе вещей законченных, отполированных и расфасованных. В ряде случаев, если для завершения деятельности было достаточно лишь очень небольшого усилия, этот факт будет скрыт. В других случаях сокрытию подлежат долгие, изнурительные часы одинокого труда…

Опубликованные математические статьи нередко содержат слегка раздражающие высказывания типа «Отсюда следует, что…» или же «Ясно, что…», тогда как в действительности совершенно не следует и абсолютно не ясно, пока вы не потратите те же шесть часов, что потратил автор, на прописывание промежуточных шагов и проверку их правильности. Об английском математике Г.X. Харди, с которым мы еще встретимся ниже, рассказывают такую историю. Дойдя на лекции до определенного места в своих рассуждениях, он сказал: «Теперь очевидно, что…» Тут он остановился, замолчал и несколько секунд простоял без движения с нахмуренными бровями. Потом вышел из аудитории. Минут через двадцать он вернулся, улыбаясь, и продолжил: «Да, действительно, очевидно, что…»

Но кроме отсутствия амбиций Гаусс демонстрировал и отсутствие такта. Он нажил массу неприятностей в общении с коллегами-математиками из-за того, что ссылался на открытия, которые он сделал, но не опубликовал за годы до того, как другие открывали то же самое, однако публиковали свои результаты. Дело было не в тщеславии — Гауссу не было свойственно тщеславие, — а в том, что доктор Джонсон называл «грубой бесчувственностью». Например, в опубликованной в 1809 году книге Гаусс ссылается на метод наименьших квадратов, придуманный им в 1794 году (способ найти наилучшую «подгонку» для некоторого количества экспериментальных данных). В момент, когда он сделал это открытие, он его, разумеется, не опубликовал. Принадлежащий к чуть более старшему поколению французский математик Адриен-Мари Лежандр открыл и опубликовал этот метод в 1806 году; он был разъярен, когда Гаусс приписал приоритет открытия себе. У нас нет сомнений в правоте Гаусса — тому имеются документальные подтверждения, — но если Гаусс желал, чтобы его имя ассоциировалось с этим результатом, ему надо было его опубликовать. Он, однако, не беспокоился, будет ли увековечено его имя, и не намеревался публиковать свои результаты, если ему не хватало времени отполировать их до полного совершенства.

III.

В декабре 1849 года Гаусс вел переписку с немецким астрономом Йоханом Францем Энке (именем которого названа знаменитая комета)[24] Энке высказал кое-какие комментарии по поводу частоты появления простых чисел. Ответное письмо Гаусса начиналось так:

Любезное сообщение о ваших наблюдениях по поводу частоты появления простых чисел заинтересовало меня более, чем просто упоминание. Оно напомнило мне мои собственные изыскания по тому же предмету, начало которым было положено в далеком прошлом, в 1792 или 1793 году. <…> Одна из первых вещей, которые я сделал, состояла в том, что, обратив внимание на уменьшающуюся частоту, с которой появляются простые числа, я их вычислил в нескольких группах из тысячи чисел и бегло набросал результаты, листок с которыми прилагаю к письму. Я вскоре осознал, что при всех своих флуктуациях эта частота в среднем близка к величине, обратно пропорциональной логарифму… (Курсив мой. — Дж. Д.) С тех пор я время от времени (поскольку мне недостает терпения, чтобы последовательно посчитать весь интервал) уделяю свободные четверть часа, чтобы то тут, то там пересчитать еще один отрезок длиной в тысячу; но в конце концов я забросил это дело, не добравшись толком и до миллиона.

Итак, начиная с 1792 года — когда ему было лишь 15 лет! — Гаусс забавлялся пересчетом всех простых чисел в интервале из 1000 чисел за раз и довел эти вычисления до сотен тысяч («не добравшись толком и до миллиона»). Чтобы представить себе, усилия какого порядка здесь требуются, я задался целью извлечь все простые числа из отрезка в тысячу чисел от 700 001 до 701 000, пользуясь при этом лишь теми средствами, которые могли быть доступны Гауссу, — карандашом, несколькими листами бумаги и списком простых чисел до 829 — именно такие простые требуются в процессе поиска простых среди чисел до 701 000.[25] Сознаюсь, что я бросил это занятие через час, когда я провел вычисления с простыми делителями до 47 — что означает, что мне оставалось еще 130 простых делителей. Я приглашаю вас самостоятельно попробовать такое упражнение. Это и были гауссовы «свободные четверть часа» (unbeschäftigte Viertelstunde).

Предложение, выделенное курсивом в отрывке из письма, которое Гаусс написал Энке, и составляет один из двух связанных с ТРПЧ результатов, обсуждавшихся в главе 3.ix. Как там было замечено, это утверждение эквивалентно самой ТРПЧ. Нет никаких сомнений в том, что Гаусс действительно работал над этим в начале 1790-х годов. Его заявлениям было найдено документальное подтверждение, так же как и другим заявлениям того же типа. Он просто не трудился публиковать свои результаты.

IV.

Любопытно, что первая опубликованная работа, относящаяся к ТРПЧ, принадлежит тому самому Адриену-Мари Лежандру, которого так возмутило заявление Гаусса об открытии им метода наименьших квадратов. В 1798 году — через пять или шесть лет после того, как Гаусс докопался до формулировки ТРПЧ, но не предоставил свои результаты в распоряжение человечества, — Лежандр опубликовал книгу, озаглавленную «Очерки о теории чисел», в которой он на основе своих собственных подсчетов числа простых чисел высказал предположение, что

1 ... 11 12 13 14 15 16 17 18 19 ... 95
Перейти на страницу:
На этой странице вы можете бесплатно скачать Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит