Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон
Шрифт:
Интервал:
Закладка:
Позвольте мне устроить небольшой фокус с таблицей 3.1. Я поделю первую колонку на вторую — аргументы на значения. Я не гонюсь за безумной точностью. И вообще буду пользоваться карманным калькулятором за 6 долларов, с которым я хожу в супермаркет. Вот что получается: 100 разделить на 168 даст 5,9524; 1 000 000 разделить на 78 498 даст 12,7392. Еще четыре результата подобного же вычисления дают нам таблицу 3.2.
N N/π(N) 1 000 5,9524 1 000 000 12,7392 1 000 000 000 19,6665 1 000 000 000 000 26,5901 1 000 000 000 000 000 33,5069 1 000 000 000 000 000 000 40,4204Таблица 3.2.
Посмотрим пристально на эти значения. Они всякий раз возрастают на 7. Точнее, на число, которое болтается между 6,8 и 7,0. Может, вам это и не кажется чем-то особенно чудесным, но когда математик видит такую таблицу, над головой у него ярко вспыхивает лампочка и определенное слово приходит ему на ум. Позвольте объяснить.
VI.Имеется определенное семейство функций, которые страшно важны в математике, — показательные функции. Не исключено, что вы о них кое-что знаете. Их еще называют «экспоненциальными», и это слово проникло из математики в обычный язык. Мы все надеемся, что наши деньги, вложенные в инвестиционные фонды, будут расти экспоненциально — другими словами, быстрее и быстрее.
С принятой нами точки зрения — иллюстрирования функций двухколоночными таблицами типа таблицы 3.1 — можно нестрого определить показательную функцию следующим образом. Если взять набор значений аргумента так, чтобы при переходе от строки к строке они росли как результат регулярного сложения, и если при этом окажется, что получающиеся значения функции растут как результат регулярного умножения, то перед нами — показательная функция. Слово «регулярный» здесь означает, что происходит прибавление одного и того же числа или умножение на одно и то же число.
Рассмотрим пример. Возьмем правило «вычислить 5×5×5×5×… — выражение, содержащее N пятерок».
N 5N 1 5 2 25 3 125 4 635Видите, как аргумент каждый раз увеличивается путем прибавления 1, в то время как значения каждый раз увеличиваются путем умножения на 5? Это показательная функция. Аргументы увеличиваются «по сложению», а значения — «по умножению».
Я для удобства выбрал вариант, когда аргумент каждый раз увеличивается путем прибавления 1, и буду придерживаться его и далее. Для данной конкретной функции это приводит к умножению аргумента на 5. Разумеется, в числе 5 нет ничего специального. Можно было бы выбрать функцию, в которой множитель равен 2, или 22, или 761, или 1,05 (что, кстати, дало бы таблицу накопления сложных процентов при ставке в 5%), или даже 0,5. В каждом из случаев мы получим показательную функцию. Вот почему я сказал, что имеется некоторое «семейство функций».
Еще один термин, который математики обожают, — «канонический вид». В ситуации, подобной данной, когда имеется явление (в нашем случае — показательная функция), которое может проявляться многими различными способами, есть, вообще говоря, один способ, которым математики желают представить все явление. В данном случае вот какой. Есть одна показательная функция, которую математики предпочитают всем остальным. Если бы вы принялись угадывать, то, наверное, предположили бы, что это та функция, в которой множителем является число 2 — самое простое в конце концов, на что можно умножить. Но нет! Канонический вид показательной функции, предпочтительный для математиков, имеет множитель 2,718281828459045235. Это еще одно магическое число наряду с π, которое проявляет себя во всех областях математики.[17] Оно уже встречалось нам в этой книге (см. главу 1.vii). Оно иррационально[18], так что последовательность знаков после запятой никогда не повторяется и его нельзя переписать в виде дроби. Символ e для этого числа был введен Леонардом Эйлером, о котором будет много всего сказано в следующей главе.
Но почему именно это число? Не слишком ли оно неуклюже, чтобы с его помощью определять канонический вид? Разве не много проще было бы с числом 2? Да, наверное, для целей умножения было бы проще. Я не могу объяснить важность числа e, не вдаваясь в вычисления, а я дал торжественный обет объяснить Гипотезу Римана с минимумом вычислений. По этой причине я просто убедительно попрошу вас принять на веру, что e — действительно, действительно важное число и что ни одна другая показательная функция не может и близко сравниться с этой eN. Вот как выглядит наша таблица:
N eN 1 2,718281828459 2 7,389056098931 3 20,085536923188 4 54,598150033144(здесь точность — 12 знаков после запятой). Основной принцип, конечно, сохраняется — аргументы (левая колонка) растут каждый раз за счет добавления 1; при этом значения в правой колонке каждый раз умножаются на e.
VII.А если наоборот? Представим себе функцию, основанную на таком правиле: когда аргумент растет «по умножению», значения растут «по сложению». Что за функция получится?
Здесь мы вступаем в царство обратных функций. Математики имеют особое пристрастие к тому, чтобы обращать самые разные вещи — выворачивать их наизнанку. Если у есть 8 умножить на x, то как выразить x через y? Понятно, что это y/8. Деление обратно умножению. Еще есть такое любимое нами действие, как возведение в квадрат, когда мы умножаем число само на себя. И каково же его обращение? Если y = x2, то чему равен x в терминах y? Ну да, это квадратный корень из y. Если вы немного знакомы с анализом, то знаете, что есть действие, называемое «дифференцированием», которое позволяет превратить функцию f в другую функцию — g, говорящую о том, какова мгновенная скорость изменения функции f при каждом ее аргументе. И каково же действие, обратное дифференцированию? Это интегрирование. Ну и так далее. Обращение станет ключевой темой позднее, когда мы вникнем в работу Римана 1859 года.
С точки зрения принятого нами подхода, когда функции показаны в виде таблиц, обращение просто означает отражение таблицы, при котором ее правая часть становится левой, а левая — правой. Правда, это быстрый способ нажить себе неприятности. Возьмем функцию возведения в квадрат — скорее всего, первую нетривиальную функцию, с которой вы познакомились в школе. Чтобы возвести число в квадрат, мы умножаем его само на себя. Вот соответствующая таблица:
N N2 −3 9 −2 4 −1 1 0 0 1 1 2 4 3 9(Я полагаю, что вы помните о правиле знаков, так что −3 умножить на −3 дает 9, а не −9).[19] А теперь поменяем колонки местами и получим обратную функцию: