Хаос. Создание новой науки - Джеймс Глейк
Шрифт:
Интервал:
Закладка:
Зачастую такой подход срабатывал. Биология популяций выяснила кое-что об истории возникновения жизни, об отношениях хищников и их жертв, о том, как влияет изменение плотности населения в регионе на распространение болезни. Если математическая модель показывала, как процесс развивается, достигает равновесия или затухает, экологи могли представить себе обстоятельства, при которых вероятны подобные события.
Одно из весьма полезных упрощений заключалось в моделировании окружающего мира в рамках отдельных временных интервалов. Так, стрелка наручных часов секунда за секундой скачет вперед, вместо того чтобы двигаться непрерывно и незаметно. Дифференциальные уравнения, которые описывают плавно изменяющиеся во времени процессы, трудно решить. Гораздо проще использовать так называемые разностные уравнения, вполне пригодные для описания скачущих от состояния к состоянию процессов. К счастью, большинство популяций животного мира проходит свой жизненный цикл за год. Изменения, происходящие от года к году, зачастую важнее тех, что случаются в сплошной временной среде. В отличие от людей многие насекомые, например, успевают развиться, достичь зрелости, дать потомство и умереть за один сезон, и периоды жизни поколения поэтому не накладываются друг на друга. Чтобы рассчитать, какова будет численность популяции непарного шелкопряда следующей весной или сколько людей зимой заболеют корью, экологу хватает данных текущего года. Столь точная повторяемость цифр, подобная неизменяющейся подписи человека, дает весьма слабое представление о сложности системы, однако для пытливого ума и этой малости достаточно.
В сравнении с математикой Стива Смэйла математика экологии — это то же самое что десять заповедей в сравнении с Талмудом: отличный набор действующих правил, но ничего особо запутанного. Для описания популяции, численность которой с каждым годом меняется, биологу достаточно проделать вычисления, доступные даже студенту высшей школы. Предположим, что будущая численность популяции непарного шелкопряда полностью зависит от ее численности в текущем году. Вообразите, что у вас есть таблица, отражающая эту зависимость: если численность особей достигнет 31 тысячи в текущем году, следовательно, через год их будет уже 35 тысяч, и т. д. Можно представить соотношение между данными величинами как правило следующего содержания: численность популяции в будущем году есть функция от нынешней численности. Каждая функция может быть изображена графически, что позволяет охватить ее единым взглядом.
При использовании простой модели, которая подобна только что описанной, наблюдение за изменяющейся во времени численностью популяции сводится к определению начальной цифры и повторению однотипных вычислений на базе выбранной функциональной зависимости. Данные для третьего года выводятся из данных для второго и т. д. Благодаря подобному итерационному процессу можно рассмотреть историю популяции на протяжении многих лет. Тут обнаруживается своего рода обратная связь, когда результат каждого года служит исходной величиной для последующего. Обратная связь может стать неуправляемой, как бывает, когда звук из громкоговорителя проходит обратно через микрофон, мгновенно усиливаясь до невыносимого визга. С другой стороны, обратная связь способна породить и стабильность, как в случае с термостатом, который регулирует температуру в жилом доме: любое ее увеличение сверх определенного уровня ведет к охлаждению, а за снижением следует нагрев.
Возможно применение нескольких типов функций. Та, которую используют при упрощенном подходе, предполагает, что численность популяции x ежегодно увеличивается на определенное число особей; это линейная функция xc = rx, где x и xc — численности в предыдущий и последующий годы соответственно. Данное выражение иллюстрирует классическую мальтузианскую схему увеличения популяции, не сдерживаемого пищевым и моральным факторами. Величина r есть коэффициент роста численности особей. Допустим, его значение равно 1,1. В таком случае, если популяция в текущем году насчитывает 10 особей, в следующем их будет уже 11. Если начальная цифра составляет 20 тысяч, конечная достигнет 22 тысяч. Численность популяции растет и растет, словно сумма, которая положена на сберегательный счет, предполагающий капитализацию процентов.
Впрочем, экологи давно уже поняли, что им необходимо нечто более сложное. Ученый, наблюдая за рыбами в реальном водоеме, должен постараться найти функцию, которая учитывала бы жестокую реальность, например угрозу голода или соперничество в стае. По мере роста популяции истощается запас пищи. Размеры небольшой стаи быстро растут, а чересчур большая сокращается. Возьмем жуков-вредителей. Попробуйте каждый год первого августа подсчитывать их численность в вашем саду. Чтобы упростить задачу, не принимайте во внимание птиц, болезни данного вида насекомых — учтем лишь имеющийся запас пищи. Выяснится, что жуки активно размножаются, когда их мало, но стоит им чересчур расплодиться, как они объедят весь сад и после этого погибнут от голода.
В мальтузианской схеме неограниченного увеличения численности популяции значение линейной функции роста всегда будет увеличиваться. Схема же, более приближенная к жизни, должна включать в себя особый фактор, сдерживающий рост, если популяция уже и так велика. Наиболее подходящей кажется функция, которая будет резко возрастать при небольших размерах популяции, сводить рост ее численности примерно к нулю при средних размерах и снижаться при быстром размножении особей. Пользуясь ею из раза в раз, эколог может наблюдать, как ведет себя популяция на протяжении длительных периодов времени, и придать своей модели определенную стабильность. Позаимствовав все необходимое из математики, эколог будет рассуждать примерно так: «Мы имеем уравнение. Вот переменная, являющаяся коэффициентом воспроизводства. Вот другая — коэффициент естественной смертности. Третья переменная служит коэффициентом смертности, обусловленной внешними причинами, в том числе голодом и нападением хищников. И вот, смотрите: популяция будет расти с такой-то скоростью, пока не достигнет такого-то уровня равновесия».
Но как найти подобную функцию? Могут подойти многие уравнения. Простейшей модификацией, пожалуй, окажется линейная зависимость, предложенная Мальтусом: хс = rх(1-x). Как и выше, величина r является коэффициентом роста, который можно увеличить или уменьшить. Новый член (1-x) удерживает рост в определенных границах, т. е. когда х возрастает, 1-x уменьшается[3]. Имея калькулятор, можно задать начальное значение, выбрать коэффициент роста и вычислить результат — численность популяции в следующем году.
Рис. 3.1. Популяция достигает равновесия после роста, чрезмерного увеличения численности особей и ее снижения.
К 50-м годам экологи уже использовали варианты рассмотренного выше уравнения, известного как логистическое разностное уравнение. В частности, В.-Е. Рикер из Австралии применил его для оценки рыбных промыслов. Ученые поняли, что коэффициент роста r является важной характеристикой модели. В физических системах, откуда, собственно, и позаимствовала экология подобные уравнения, данный параметр отвечал количеству теплоты, или силе трения, или другим физическим величинам, порождаемым хаотическим движением, — словом, количеству нелинейности. Применительно к рыбным угодьям он должен соответствовать плодовитости рыб, колебанию численности популяции в обоих направлениях (что именуется биотическим потенциалом). Вопрос заключался в том, каков механизм влияния различных факторов на дальнейшую судьбу изменяющейся популяции. Очевидно, что более низкое значение параметра повлечет за собой стабилизацию числа особей на относительно невысоком уровне, а то, что повыше, приведет к стабилизации на более высоком уровне. Это справедливо для многих величин, но отнюдь не для всех. Некоторые исследователи, и Рикер в их числе, применяли величины, имевшие достаточно высокие значения, и, осуществляя опыты, разглядели хаос.
Кажется удивительным, что поведение ряда показателей, поддающихся измерению и исчислению, обнаруживает определенные странности, досадные для любого, кто работает с ручной вычислительной машинкой. Конечно, бесконтрольный рост чисел еще не наблюдается, но нет и стабильности. Впрочем, ни один из ученых 60-х годов не был склонен (а может, не хватало упорства) продолжать вычисления до тех пор, пока искомая упорядоченность не будет найдена. Так или иначе, колебания численности популяции дали экологам повод предположить, что происходят они около некоего скрытого уровня равновесия. Считая последнее весьма важным, экологи ни в коем случае не предполагали, что этого уровня может не быть.