Финансы - Роберт К. Мертон
Шрифт:
Интервал:
Закладка:
В табл. 12.3 и в рис. 12.3 показаны комбинации средних значений и стандартных отклонений доходностей, которые можно получить при объединении в одном портфеле рискованного актива 1 и рискованного актива 2. Точка S на рис. 12.3 соответствует портфелю, который состоит исключительно из рискованного актива 1, а точка R — портфелю, состоящему исключительно из рискованного актива 2.
Давайте покажем, как ожидаемые ставки доходности и стандартные отклонения в In 12.3 рассчитываются по формулам 12.4 и 12.5. Рассмотрим портфель С, который эит на 25% из рискованного актива 1 и на 75% — из рискованного актива 2.
Щ
Рискованный актив 1
Й.йЙйЙй.Йй?;
Рискованный актив 2
Среднее значение
'/!-
Эгакдартное отклонение рйрреляция
0,14 0,20 0
0,08 0,15 0
Соотношение риск/доходность для портфелей с двумя рискованными
eSllleSltESgeKeeiBe
пь
Доля средств, вложенная в рискованный актив 1 (%)
Доля средств, вложенная в рискованный актив 2 (%)
Ожидаемая ставка доходности
Стандартное отклонение
0
100
0,0800
0,1500
25
75
0,0950
0,1231
|ьная я
36
64
0,1016
0,1200
50
50
0,1100
0,1250
100
0
0,1400
0,2000
1одставив необходимые значения в уравнение 12.4, мы найдем, что ожидаемая ва доходности в точке С составит 0,095 в год:
jE'(r)=0,25 E(r,) +0,75 E{r} =0,25х0,14 +0,75х0,08 =0,095 ставив в уравнение 12.5 значение w, мы выясним, что стандартное отклонение
(Т2 = W22 + (1 - w) (72 + 2w (1 - w) pO'iO'2
=0,252x0,22+0,752x0,152+0 =0,01515625
о- =УО,01515625 =0,1231
Рис. 12.3. Кривая соотношения риск/доходность: только рискованные активы
Примечание. Предполагается, что £'("/•=0,14, о-/=0,20, E(r)=0,OS, crj=0,15, /т=0.
Давайте с помощью табл. 12.3 исследуем кривую, соединяющую на рис. 12.3 точки R и S. Начнем с точки R и переместим часть наших капиталов из рискованного актива 2 в рискованный актив 1. При этом наблюдается не только повышение средней ставки доходности, но и снижение стандартного отклонения. Оно снижается до тех пор, пока мы не получим портфель, который на 36% состоит из инвестиций в рискованный актив 1 и на 64% — в рискованный актив 26.
Эта точка характеризует портфель с минимальной дисперсией (minimum-variance portfolio), состоящий из рискованного актива 1 и рискованного актива 2. Если в рискованный актив 1 инвестируется более 36% общего капитала, то стандартное отклонение портфеля увеличивается.
Контрольный вопрос
Каково среднее значение доходности и ее стандартное отклонение для портфеля, который на 60% состоит из рискованного актива 1 и на 40% — из рискованного актива 2, если их коэффициент корреляции равен 0,1? .
6 Формула, описывающая долю рискованного актива 1, которая минимизирует дисперсию портфеля, выглядит следующим образом:
12.3.2. Оптимальная комбинация рискованных активов
Теперь давайте рассмотрим комбинации риск/доходность, которые мы можем подучить посредством объединения безрискового актива с рискованными активами 1 и 2. На рис. 12.4 показано графическое представление всех возможных комбинаций риск/доходность; этот рисунок показывает также, как можно получить оптимальную комбинацию рискованных активов для объединения с безрисковым активом.
Стандартное отклонение
Рис. 12.4. Оптимальная комбинация рискованных активов Примечание. Предполагается, что Гу=0,06, £/-=0,14, сг/=0,20, £)=0,08, сг;=0,15, /?=0.
Сначала проанализируем прямую линию, соединяющую точку F с точкой S. Она нам уже знакома, поскольку представляет собой график соотношения риск/доходность, который мы видели на рис. 12.1. Прямая показывает ряд комбинаций риск/ доходность, которые могут быть получены посредством объединения безрискового актива с рискованным активом 1.
Прямая линия, соединяющая точку Fc любой точкой кривой, соединяющей точки R и S, представляет собой график, описывающий соотношение риск/доходность для всех комбинаций следующих трех активов: рискованных активов 1 и 2 с безрисковыми активами. Наибольшие значение этого соотношения, которого мы можем достичь, находится на линии, соединяющей точки F и Т. Точка Т является общей точкой прямой линии, выходящей из точки F, и кривой, соединяющей точки R и S. Мы называем такой рискованный портфель, который соответствует общей точке Г на рис. 12.4, оптимальной комбинацией рискованных активов. Именно объединением этого портфеля рискованных активов с безрисковым активом достигается формирование максимально эффективного портфеля. Формула для определения долей портфеля в точке Г такова:
Подставляя данные в это уравнение, получаем, что оптимальной комбинацией Рискованных активов (для портфеля в точке пересечения с прямой, который еще называют тангенциальным портфелем (the tangency portfolio)), является 69,23% рискованного актива 1 и 30,77% рискованного актива 2. Это означает, что ставка доходности Е(г-г), и стандартное отклонение, оу, равны:
£(/y)=0,122 От =0,146
Следовательно, новый график для эффективного соотношения риск/доходность задан формулой:
где угол наклона — отношение доходности к риску — равен 0,42. Сравним полученное выражение с формулой для прежней линии соотношения риск/доходность, соединяющей точки F и S:
Е (г) =0,06 +0,40ст
где угол наклона равен 0,40. Понятно, что теперь инвестор находится в лучшем положении, потому что он может достичь более высокой ожидаемой ставки доходности для любого уровня риска, на который он готов пойти.
12.3.3. Формирование наиболее предпочтительного инвестиционного портфеля
Чтобы завершить анализ, давайте рассмотрим выбор инвестора с точки зрения его предпочтений и с учетом графика соотношения риск/доходность для эффективных портфелей. Надеюсь, вы не забыли, что в разделе 12.1 мы упоминали о том, что предпочтения при формировании портфеля зависят от стадии жизненного цикла, на которой находится инвестор, периода (горизонта) планирования и толерантности к риску. Следовательно, инвестор может выбрать позицию в любой точке на отрезке, ограниченном точками F и Г. На рис. 12.5 для этого выбрана точка Е. Портфель, который соответствует точке Е, на 50% состоит из портфельных инвестиций в общей точке (тангенциальный портфель) и на 50% из инвестиций в безрисковый актив. Преобразуем уравнения 12.1 и 12.2 таким образом, чтобы они отражали тот факт, что портфель в точке касания — это теперь единственный рискованный актив, который следует объединять с безрисковым активом. Выясняется, что ожидаемая доходность и стандартное отклонение портфеля Е имеют вид:
() = /у + 0,5 х [£(/y) - /7] = 0,06 + 0,5(0,122 - 0,06) = 0,091 ст= 0,5ха,- =0,5х0,146=0.073
Учитывая, что тангенциальный портфель состоит на 69,2% из рискованного актива 1 и на 30,8% — из рискованного актива 2, можно определить, что состав портфеля будет следующим:
Доля безрискового актива
50,0%
Доля рискованного актива 1
0,5х69,2%=
34,6%
Доля рискованного актива 2
0,5х30,8%=
15,4%
Всего
100,0%
Следовательно, если вы инвестировали 100000 долл. в портфель Е, то 50000 долл. инвестировано в безрисковый актив, 34600 долл. — в рискованный актив 1 15400 долл. — в рискованный актив 2.
Давайте теперь обобщим имеющиеся у нас сведения относительно создания эффективного портфеля, когда имеется два вида рискованных активов и один безрисковый актив. Существует только один портфель с рискованными активами, который оптимальным образом можно объединить с безрисковым активом. Мы называем этот особенный портфель с рискованными активами, соответствующий общей (тангенциальной) точке Г на рис. 12.4, оптимальной комбинацией рискованных активов. Предпочтительный портфель всегда является какой-либо комбинацией портфеля рискованных активов в общей точке и безрискового актива .
Стандартное отклонение Рис. 12.5. Выбор наиболее предпочтительного портфеля
12.3.4. Как получить заданную ожидаемую доходность: пример 2
Предположим, что у вас имеется 100000 долл., которые вы хотели бы инвестировать с ожидаемой ставкой доходности в 0,10 годовых. Сравните стандартное отклонение доходности, на которое вам пришлось бы пойти при прежнем графике риск/доходность (линия, соединяющая точки Ей S) со стандартным отклонением при новом графике риск/доходность (линия, соединяющая точки F и 7). Каков состав каждого из этих двух портфелей?