Эволюция Вселенной и происхождение жизни - Пекка Теерикор
Шрифт:
Интервал:
Закладка:
Без сомнения, вода — самый подходящий растворитель для всех биохимических реакций. Молекула воды состоит из одного атома кислорода и двух атомов водорода, связанных между собой ковалентными связями; это означает, что общая электронная пара движется вокруг атома кислорода и каждого из атомов водорода (рис. 28.12).
Атом кислорода притягивает электроны сильнее, чем водород, поэтому они располагаются ближе к кислороду. Это приводит к тому, что кислородный конец молекулы имеет небольшой отрицательный заряд, а водородный конец — положительный: молекула воды является электрическим диполем (полярной молекулой). Эта особенность сильно влияет на химические свойства воды. Электрическая полярность молекул воды вызывает слабое электростатическое взаимодействие — водородную связь — между соседними молекулами (см. рис. 28.12); это заставляет воду вести себя как объединенную слабосвязанную сеть. Водородные связи вынуждают молекулы притягивать друг друга, превращая жидкость в немного «липкую», вязкую. Из-за этой «липкости» нужна довольно высокая температура и много тепловой энергии, чтобы испарить воду, перевести ее в газовую форму. Поэтому вода сохраняет жидкое состояние в широком диапазоне температуры. Эта «липкость» препятствует также повышению температуры воды (усилению теплового движения молекул), потому для этого требуется много тепловой энергии. С другой стороны, так же много энергии высвобождается при остывании воды; это делает воду очень хорошим термостатом — и в окружающей среде, и внутри клетки.
Рис. 28.12. Молекулы воды в жидком состоянии (слева) и в составе льда (справа). Водородные связи показаны линиями.
Вода охотно взаимодействует с другими заряженными молекулами; это делает ее очень хорошим растворителем всех ионных соединений из положительно или отрицательно заряженных атомов. Вода растворяет и полярные соединения, когда положительный и отрицательный заряды находятся в одной молекуле, но раздельно (как у воды). С другой стороны, вода не может растворять неполярные молекулы, такие как длинные незаряженные углеводородные цепочки.
Это свойство очень важно для биологии, поскольку оно означает, что эти молекулы «гидрофобны», то есть в водном растворе они стремятся объединиться друг с другом, а не с молекулами воды.
Очень важным типом молекул являются липиды (жиры), К одному концу такой молекулы прикреплена полярная или заряженная группа, делающая этот конец гидрофильным, то есть растворяющимся в воде. А к другому концу прикреплена неполярная группа (например, углеводородная цепочка), превращающая этот конец в гидрофобный. Такие молекулы с двойными свойствами амфифильны: они собираются в водном растворе и образуют двухслойные мембраны (рис. 28.13). Гидрофильные и гидрофобные взаимодействия сильно влияют на образование трехмерной структуры и всех других молекул, включая белки, и помогают им принять правильную функциональную форму.
Из-за притяжения водородных связей и под действием поверхностного натяжения и испарения вода в окружающей среде ведет себя очень хорошо. Благодаря капиллярному эффекту она может двигаться против притяжения, например в сосудистой системе растений, по которой она поднимается до кроны высоких деревьев. Вода движется и по капиллярным каналам почвы, самостоятельно поднимаясь с уровня грунтовых вод к корневой системе растений. Водородные связи влияют и на плотность воды при разной температуре совершенно особым образом. При понижении температуры водородные связи становятся сильнее и короче, так что при температуре +4 °C молекулы воды располагаются наиболее близко друг к другу; при этой температуре вода наиболее плотная. При дальнейшем снижении температуры молекулярная конфигурация начинает меняться в сторону более слабых шестиугольных водородных связей, типичных для кристаллов льда (рис. 28.12), поэтому объем воды начинает увеличиваться. Лед низкой плотности образуется на поверхности воды при температуре 0 °C, а более плотная вода с температурой +4 °C остается на дне водоема. Таким образом, если водоем достаточно глубокий или мороз не слишком сильный, вода с температурой +4 °C может оставаться в жидкой форме под ледяной корой даже в холодный период, что позволяет выжить в глубокой воде и не замерзнуть подо льдом. Это очень важное и очень редкое свойство. Например, аммиак, который, возможно, мог бы быть подходящим альтернативным растворителем для жизни, в твердой форме тяжелее, чем в жидкой.
Рис. 28.13. Липиды, (а) Различные типы липидов: многие липиды состоят из двух гидрофобных углеводородных цепочек и одной полярной боковой группы (ROCH3), связанных с глицериновой основой. Липиды с эфирными связями существуют в мембранах архей, а липиды со сложно-эфирными связями между глицериновыми основами и боковыми цепочками аминокислот существуют в бактериях и эукариотах, (б) Разное строение мембран: амфифильные молекулы, собранные в двухслойную, монослойную и мицеллярную формы.
Это означает, что пруд из аммиака промерзал бы до дна и мог бы все время оставаться замерзшим. Из-за отсутствия водородных связей аммиак существует в жидком состоянии только в очень узком диапазоне температур и при гораздо более низких температурах, чем вода (между -78 °C и -33 °C на уровне моря). При этих температурах все биохимические реакции протекали бы очень медленно. Кроме того, аммиак легко разрушается ультрафиолетовым светом, и его легкий компонент — водород легко улетает в космос. Солнечные ультрафиолетовые лучи разрушают и воду, но эта реакция протекает медленнее и дает кислород (O2) и озон (O3), который блокирует ультрафиолетовое излучение и предотвращает дальнейшее разрушение воды. Поэтому вода существует в большом количестве в атмосферах планет, похожих на Землю, а аммиак — нет.
Основные законы жизни.Итак, мы узнали, что общим свойством жизни в первую очередь является клеточное строение. Клетка — это ограниченная и выделенная из своего окружения структура, основанная на генетической информации, которая позволяет поддерживать специфический химический состав и сложные структуры и функции внутри клетки. Все клеточные структуры и молекулы сложены из весьма ограниченного ряда химических элементов: в основном это углерод, водород, кислород, азот и фосфор, а также немного серы, кальция, калия и некоторых других элементов. Мы также знаем, что вся жизнь, известная нам здесь, на Земле, структурно и функционально однотипна, то есть основана на одном и том же генетическом материале, едином генетическом коде и механизме его экспрессии, а также на очень схожих основных метаболических реакциях. Однообразие всех форм жизни указывает, что все они происходят от единственной исходной формы жизни — последнего общего предка. Это однообразие всех форм жизни здесь на Земле и создает проблемы при ее описании. Из этого единственного примера жизни мы не можем судить, могла ли она быть другой или же насколько иной она может быть в другом мире. Но мы можем сделать некоторые обоснованные предположения.
Кажется, что любой сложный биохимический процесс должен иметь в своей основе соединения углерода, использовать в качестве растворителя воду, а также свет ближайшей звезды как долговременный источник энергии. Разумно предположить, что принципы воспроизводства и естественного отбора (эволюции) должны быть подходящей движущей силой для поддержания жизни в любом месте. Эти процессы управляются случайными изменениями генетической информации и действием отбора со стороны окружающей среды, которая может сильно отличаться от нашей. Следовательно, результат эволюции другой биосферы в другое время и в другом месте, скорее всего, будет совершенно иным, чем у нас. Формы и функции и даже клеточные структуры и биохимия любой самостоятельной инопланетной жизни могут сильно отличатся от сегодняшней жизни на Земле.
Впрочем, другая жизнь могла бы обладать некоторыми похожими свойствами, которые есть и у нас, если они универсальны. Например, эти инопланетные формы жизни могли бы иметь некоторые средства для сбора световой энергии и преобразования ее в химическую форму. Для этого, скорее всего, будут использоваться сильно поглощающие свет пигменты. Весьма вероятно, что эти существа будут иметь средства для ощущения окружающей среды и передачи сигналов друг другу посредством света, химическим путем или звуками. Возможно, у этих существ выработаются способы передвижения. Подвижность, высокая сложность и средства коммуникации могли позволить создать орудия труда и развить умственные способности. Впрочем, последнее маловероятно, учитывая, что на Земле жизнь в течение почти всей своей истории оставалась очень простой — прокариоты и одноклеточные. Сложная многоклеточная жизнь возникла лишь недавно, так что она может быть очень редка во Вселенной.