Нормальная физиология - Агаджанян Николай Александрович
Шрифт:
Интервал:
Закладка:
Система терморегуляции
Терморегуляция – это совокупность физиологических процессов, деятельность которых направлена на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплоотдачи и теплопродукции. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если такие изменения уже произошли.
Система терморегуляции состоит из ряда элементов со взаимосвязанными функциями. Информация о температуре приходит от периферических и центральных терморецепторов (датчиков) по афферентным нервам к центру терморегуляции в гипоталамусе. Этот центр обрабатывает поступившую информацию и посылает команды эффекторам (исполнительным звеньям), т. е. активирует различные механизмы, которые обеспечивают изменение теплопродукции и теплоотдачи. По своей работе система терморегуляции аналогична системе автоматизированного контроля с отрицательной обратной связью, которая противодействует изменениям температуры, вызванным внешними и внутренними возмущениями. Температура ядра поддерживается на определенном уровне, и величина реакции эффекторов пропорциональна отклонению истинной температуры от этого уровня.
Рефлекторные и гуморальные механизмы терморегуляции
Терморецепторы
Функции терморецепторов выполняют специализированные нервные клетки, имеющие особо высокую чувствительность к температурным воздействиям. Они расположены в различных частях тела: коже, скелетных мышцах, кровеносных сосудах, во внутренних органах (в желудке, кишечнике, матке, мочевом пузыре), в дыхательных путях, в спинном мозге, ретикулярной формации, среднем мозге, гипоталамусе, коре больших полушарий и в других отделах ЦНС. Много термочувствительных нейронов в медиальной преоптической области переднего гипоталамуса. Можно выделить три группы терморецепторов: экстерорецепторы (расположены в коже), интерорецепторы (сосуды, внутренние органы), центральные терморецепторы (ЦНС). Наиболее изучены терморецепторы кожи. Больше всего их на коже лица и шеи. Кожные терморецепторы бывают двух типов – холодовые и тепловые. Оба типа особенно чувствительны к степени изменения температуры. Холодовые рецепторы резко повышают частоту импульсации в ответ на охлаждение и снижают ее, когда температура увеличивается. Тепловые рецепторы реагируют на изменение температуры противоположным образом. На поверхности тела количественно преобладают холодочувствительные терморецепторы. Холодовые рецепторы располагаются на глубине 0,17 мм от поверхности кожи, их около 250 тысяч. Тепловые рецепторы находятся глубже – 0,3 мм от поверхности, их примерно 30 тысяч.
При любой совместимой с жизнью температуре от периферических рецепторов в ЦНС поступает стационарная информация. Разряды тепловых рецепторов наблюдаются в диапазоне температур от 20 до 50°, а холодовых – от 10 до 41°С. При температуре ниже 10° холодовые рецепторы и нервные волокна гомойотермных животных блокируются. При температуре выше 45° холодовые рецепторы могут вновь активироваться, что объясняет феномен парадоксального ощущения холода, наблюдаемый при сильном нагревании. Усиление активности холодовых и тепловых рецепторов наблюдается вплоть до 50°, при более высоких температурах терморецепторы повреждаются. При температуре 47 – 48°С наряду с терморецепторами начинают возбуждаться и болевые рецепторы. Этим объясняют необычную остроту парадоксального ощущения холода.
Возбуждение рецепторов зависит как от абсолютных значений температуры кожи в месте раздражения, так и от скорости и степени ее изменения. Одни рецепторы реагируют на перепад температуры в 0,1°, другие – в 1°, а третьи возбуждаются лишь при достижении разницы в 10°. Для холодовых рецепторов оптимум чувствительности (генерация импульсации максимальной частоты) лежит в пределах 25 – 30°, для тепловых в пределах – 38 – 43°С. В этих областях минимальные изменения температуры вызывают наибольшую реакцию рецепторов.
Центры терморегуляции
Информация от кожных рецепторов идет по чувствительным нервным волокнам типа А-дельта (от холодовых рецепторов) и С, поэтому в ЦНС она доходит с разной скоростью. Афферентный поток нервных импульсов от терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов, по спиноталамическому тракту этот поток достигает передних ядер таламуса, откуда часть информации после переключения проводится в соматосенсорную кору больших полушарий, а часть – в гипоталамические центры терморегуляции.
Часть афферентного потока импульсов от терморецепторов кожи и внутренних органов поступает по более древним (спиноталамическому и спиноретикулярному) трактам, восходящим в ретикулярную формацию, неспецифические ядра таламуса, медиальную преоптическую область гипоталамуса и в ассоциативные зоны коры головного мозга.
Кора больших полушарий, участвуя в переработке температурной информации, обеспечивает условно-рефлекторную регуляцию теплопродукции и теплоотдачи. Сильные терморегуляторные реакции вызывают природные условные раздражители, сопровождающие на протяжении всей жизни организма его охлаждение или нагревание (вид снега, льда, яркое солнце и т. д.). Высшие отделы ЦНС (кора и лимбическая система) обеспечивают возникновение субъективных температурных ощущений (холодно, прохладно, тепло, жарко), мотивационных возбуждений и поведения, направленного на поиск более комфортной среды.
На теплопродукцию и теплоотдачу организма влияют многие нервные структуры. Интеграция различной сенсорной информации, связанной с тепловым балансом, и регуляция температуры тела осуществляются главным центром терморегуляции, расположенным в гипоталамусе. Разрушение этого участка гипоталамуса или нарушение его нервных связей (перерезка на уровне среднего мозга) ведет к утрате способности регулировать температуру тела. В терморегуляторном центре обнаружены различные по функциям группы нервных клеток – термочувствительные нейроны; клетки, определяющие уровень поддерживаемой в организме температуры тела; в переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи, а в заднем гипоталамусе – процессами теплопродукции. После разрушения центров переднего гипоталамуса физиологическая активность в условиях холода сохраняется, но в условиях жары температура тела быстро повышается. Разрушение центров заднего гипоталамуса нарушает способность к усилению энергетического обмена в холодной среде, и температура тела в этих условиях падает.
Термочувствительные нервные клетки способны различать разницу температуры в 0,0 ГС крови, протекающей через мозг. Данные о температуре передаются в группу нервных клеток гипоталамуса, задающих в организме уровень регулируемой температуры тела – «установочную точку» терморегуляции. На основе анализа и сравнения значений средней температуры тела и заданной величины температуры механизмы «установочной точки» через эффекторные нейроны гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Посредством центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей. Имеются данные о том, что соотношение в гипоталамусе концентраций ионов натрия и кальция определяет «заданный» уровень температуры. Изменение концентрации этих ионов приводит к изменению уровня температуры тела.
В терморегуляции принимают участие и гуморальные факторы – прежде всего гормоны щитовидной железы (тироксин и др.) и надпочечников (адреналин и др.). Снижение температуры вызывает увеличение концентрации этих гормонов в крови. Эти гормоны усиливают окислительные процессы, что сопровождается увеличением теплообразования. Адреналин суживает периферические сосуды, что приводит к снижению теплоотдачи.