Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Культурология » Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Читать онлайн Другая история науки. От Аристотеля до Ньютона - Сергей Валянский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 82 83 84 85 86 87 88 89 90 ... 163
Перейти на страницу:

Еще современник Фибоначчи генерал доминиканского монашеского ордена Иордан Неморарий (род. 1237) изображал с помощью букв произвольные числа. Впрочем, буквенного исчисления из этого не получилось, так как результат любой операции над двумя буквами обязательно обозначался третьей буквой (a+b=c, ab=d и т. д.).

Профессор Парижского университета Николай Орезм (1328–1382) обобщил понятие степени, введя дробные показатели степени, правила производства операций над ними и специальную символику, предваряя фактически идею логарифма.

В конце XV века бакалавр Парижского университета Н. Шюке, помимо дробного показателя степени, ввел также отрицательные и нулевые показатели, отрицательные числа, а также внес усовершенствования в алгебраическую символику. В этой символике нет еще специального символа для неизвестного, а большинство символов образовано путем сокращения слов. Например, m — сокращение слова minus. Знаком корня служит Rx от слова radix, корень, знаком сложения — р.

В Англии развивал теорию ученый богослов, Роберт Гросетест («Головастый»), епископ Линкольна (1175–1253), увлекавшийся к тому же оптикой. Он начал суммировать бесконечные ряды чисел, и вскоре научился отличать сходящийся ряд от расходящегося. Но и расходиться ряд может с разной скоростью. Гросетест заметил, что сумма натуральных чисел растет гораздо медленнее, чем сумма их квадратов, а сумма квадратов — медленнее, чем сумма последовательных степеней двойки. Так первый из христиан проник в область бесконечно больших и бесконечно малых величин, вторым после Архимеда, на четыре столетия опережая Ньютона.

Гросетест считал, что античных классиков (особенно Аристотеля) нужно изучать в подлиннике, а не по дурным переводам на латынь, сделанным к тому же с арабских переводов. Поэтому Гросетест пригласил в Англию ученых греков — беглецов из Константинополя, разоренного крестоносцами в 1204 году. Так в Оксфорде и Кембридже появились первые греческие профессора.

Среди учеников Гросетеста оказались выдающийся алхимик Роджер Бэкон (один из изобретателей пороха) и граф Симон де Монфор — организатор первого выборного парламента в Англии.

Коллегой и соперником Роберта Гросетеста на европейском континенте стал другой богослов — Фома Аквинский (1225–1274), решивший следовать Аристотелю и Евклиду, чтобы изложить всю христианскую ученость в виде цепи определений, аксиом и теорем.

Жан Буридан (1300–1358) был профессором Парижского университета (Сорбонны). Многим известны рассказы о буридановом осле. Этот осел из теории ученого стоял между двух одинаковых кормушек с сеном, и не мог решить, откуда поесть. И сдох. Эти мысленные эксперименты дают представление о попытках развития принципов доказательства.

Еще один профессор Сорбонны, Раймонд Луллий (1235–1315), прочел книги Аристотеля и Евклида глазами инженера; в результате появилась идея машины, автоматически выполняющая все арифметические действия с числами и логические операции над любыми утверждениями. Это был первый проект механического счетного устройства. Построить его Луллию не удалось: слишком низок был тогда уровень механического ремесла во всем мире.

Большой вклад в формально-символическое усовершенствование алгебры внесли в XV и XVI веках математики Южной Германии. Они разработали несколько систем символов, более удобных для записи математических действий, а некоторые из них высказали в своих сочинениях идеи, близкие к понятию логарифма.

Также были очевидны успехи тригонометрии, явившиеся следствием развития астрономии. Факты тригонометрии были восприняты, как и другие факты математики, в большинстве при переводе научных трактатов с арабского языка. При этом в поле зрения европейских математиков оказывались достижения астрономов и математиков как Византии, так и более поздней арабской науки.

В XV веке, когда дальние плавания стали возможны, когда изученный мир стал расширяться и представления о нем быстро изменялись, резко возрос интерес к астрономии. Это была пора, непосредственно предшествующая открытию Америки (1492), первому плаванию вокруг Африки (1498), первому кругосветному плаванию (1519), открытию и доказательству гелиоцентрической теории Коперника (1473–1543). В 1461 году в Европе появилось сочинение «Пять книг о треугольниках всякого рода», в котором впервые тригонометрия была отделена от астрономии и трактована как самостоятельная часть математики. Написал его немецкий математик Иоганн Мюллер (1436–1476), более известный как Региомонтан.

В этой книге систематически рассмотрены все задачи на определение треугольников, плоских и сферических, по заданным элементам. При этом Региомонтан расширил понятие числа, включив в него иррациональность, возникающую в случае геометрических несоизмеримостей, и прилагая алгебру к решению геометрических задач. Тем самым было открыто новое понимание предмета тригонометрии и ее задач.

Региомонтан продолжил начатую ранее другими учеными работу по составлению таблиц тригонометрических функций. Его таблица синусов имела частоту через каждую минуту и точность до седьмого знака. Для этого величину радиуса образующей окружности он брал равной 10^7, так как десятичные дроби еще не были известны. Он ввел в европейскую практику тригонометрические функции, получившие в XVII веке названия тангенса и котангенса, составив таблицу их значений.

В 1482 году в Венеции была впервые напечатана (по латыни) книга Евклида «Начала». С этого момента для математиков кончилось Средневековье и началось Новое время.

Математика эпохи Возрождения

В XVI веке европейские математики сумели, наконец, сравниться в мудрости с византийцами и превзойти их там, где успехи византийцев были не велики: в решении уравнений.

Уравнения разных степеней

Ровесник Леонардо да Винчи, профессор Сципион дель Ферро из Болоньи (ум.1526) посвятил всю жизнь решению различных алгебраических уравнений. Затруднения, связанные с неудобными обозначениями неизвестных величин, были огромны.

Как мы показали выше, важнейшие достижения математиков средневековой Европы относились к области алгебры, к усовершенствованию ее аппарата и символики. Региомонтан обогатил понятие числа, введя радикалы и операции над ними. Это позволяло ставить проблему решения возможно более широкого класса уравнений в радикалах. И в этой именно области были достигнуты первые успехи — решены в радикалах уравнения 3-й и 4-й степени.

Ход событий, связанных с этим открытием, освещается в литературе разноречиво. В основном он таков. Профессор университета в Болонье Сципион дель Ферро вывел формулу для нахождения положительного корня конкретных уравнений вида х^3 + рх = q (p>0, q >0). Он держал ее в тайне, приберегая как оружие против своих противников в научных диспутах, но перед смертью сообщил эту тайну своему родственнику и преемнику по должности Аннибалу делла Наве и ученику своему — Фиоре.

В начале 1535 года должен был состояться научный поединок между Фиоре с Николо Тарталья (1500–1557). Последний был талантливым ученым, выходцем из бедной семьи, зарабатывавшим себе на жизнь преподаванием математики и механики в городах Северной Италии. Узнав, что Фиоре владеет формулой Ферро и готовит своему противнику задачи на решение кубических уравнений, Тарталья сумел заново открыть эту формулу.

На диспуте Фиоре предложил Тарталье несколько вопросов, требующих умения решать уравнения третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Ферро, но и двух других частных случаев. Тарталья принял вызов, и сам предложил Фиоре свои задачи. Результатом состязания было полное поражение последнего. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Фиоре не мог решить ни одной задачи, предложенной ему (с обеих сторон было 30 задач).

Вскоре Тарталья смог решать уравнения вида х^3 = рх + q (p>0, q >0). Наконец он сообщил, что уравнения вида х^3 + q = px сводятся к предыдущему виду, но не дал способа сведения. Тарталья долго не публиковал своего результата. Причин этому было две: во-первых, та же причина, которая останавливала и Ферро. Во-вторых, невозможность справиться с неприводимым случаем. Последний состоит в том, что есть уравнения х^3 = рх + q которые имеют действительный положительный корень. Однако формула Тартальи не давала решения в том случае, когда надо было извлекать корень из отрицательных чисел, так как не было возможности правильно трактовать мнимые числа, получающиеся при этом. Неприводимый случай появлялся у Тартальи и в уравнениях вида х^3 + q = px.

1 ... 82 83 84 85 86 87 88 89 90 ... 163
Перейти на страницу:
На этой странице вы можете бесплатно скачать Другая история науки. От Аристотеля до Ньютона - Сергей Валянский торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит