Общая химия - Николай Глинка
Шрифт:
Интервал:
Закладка:
Большое значение для анализа очень малых объемов растворов (0,01-0,1 мл) приобрела распределительная хроматография на бумаге, предложенная Консденом (Англия) в 1944 г. Она основана на том, что между двумя несмешивающимися жидкостями третий компонент распределяется в соответствии с характерным для этого вещества коэффициентом распределения, представляющим отношение его концентраций в граничащих жидкостях (закон распределения, см. § 76).
Для осуществления хроматографического процесса необходимо, чтобы один слой жидкости перемещался относительно другого. В этом случае распределение растворенных веществ между двумя слоями жидкости происходит многократно в динамических условиях. При хроматографии на бумаге одна, более полярная жидкость сорбируется волокнами бумаги, образуя фиксированную (неподвижную) жидкую фазу; другая, менее полярная жидкость, смачивая волокна бумаги, поднимается по листу в силу явления капиллярного поднятия.
На рис. 99 показана, схема распределительной хроматографии на бумаге («восходящая хроматография»). На стартовую линию полости хроматографической бумаги раздельно наносят по капле исследуемого раствора смеси веществ (А + Б) и предполагаемого компонента смеси — «свидетеля» (рис. 99,I). Нижний край полоски бумаги погружают в растворитель. Когда фронт растворителя почти достигнет верхнего края полоски бумаги, пройдя путь Lф (рис. 99,II), компоненты исходной смеси, при правильно подобранной системе растворителей, разделяются на ряд пятен, которые выявляют соответствующими цветными реакциями на ожидаемые компоненты и сравнением с положением пятен «свидетелей». Путь, пройденный компонентом А исходной смеси (LA), определяется коэффициентом распределения для данного вещества.
Рис. 99. Восходящая распределительная хроматография на бумаге.
- 318 -
Относительная величина этого пути LA/Lф, обозначаемая RfA, является характерной для каждого вещества в определенной системе растворителей.
112. Электрокинетические явления.
Электрокинетическими явлениями называют перемещение одной фазы относительно другой в электрическом поле и возникновение разности потенциалов при течении жидкости через пористые материалы (потенциал протекания) или при оседании частиц (потенциал оседания). Перенос коллоидных частиц в электрическом поле называется электрофорезом, а течение жидкости через капиллярные системы под влиянием разности потенциалов — электроосмосом. Оба эти явления были открыты профессором Московского университета Ф. Ф. Рейссом в 1809 г.
Электрокинетические явления свидетельствуют о том, что на границе раздела фаз возникает двойной электрический слой, представляющий собой тонкий поверхностный слой из пространственно разделенных электрических зарядов противоположного знака. В дисперсных системах двойной электрический слой образуют ионы и дипольные молекулы. Ионный двойной электрический слой возникает либо в результате диссоциации ионогенных групп вещества твердой фазы, либо вследствие избирательной адсорбции ионов, достраивающих кристаллическую решетку твердой фазы. В результате на границе между твердой фазой и раствором возникает подобие конденсатора, внутренняя обкладка которого образована потенциалопределяющими ионами, а наружная — противоионами.
Возникновение двойного электрического слоя путем избирательной адсорбции ионов рассмотрим на примере получения коллоидных частиц AgI при взаимодействии AgNO3 и KI в их сильно разбавленных растворах при небольшом избытке KI.
На поверхности кристаллов преимущественно адсорбируются ионы, идентичные ионам, образующим кристаллическую решетку, либо сходные с ними. В рассматриваемом случае будут адсорбироваться ионы I-, и поверхность кристалликов AgI приобретает отрицательный заряд. Межфазовый потенциал, или ε-потенциал (греч, ε — "эпсилон"), представляет собой работу против кулоновских сил, необходимую для переноса единицы заряда противоположного знака с поверхности кристалла в бесконечность.
Противоионы (в данном случае ионы K+) находятся под действием электрического поля заряженной поверхности и теплового движения, стремящегося равномерно распределить их в объеме.
Рис. 100. Схема строения коллоидной мицеллы (а) и изменения потенциала (б) в двойном электрическом слое: 1 — ядро; 2 — двойной электрический слой; 3 — его адсорбционная часть; 4 — его диффузная часть; АБ — межфазовый φ-потенциал; ВГ — электрокинетический потенциал; "-" — потенциалопределяющие ионы; "+" - противоионы.
Рис. 101. Схема передвижения коллоидной частицы при электрофорезе (а) и электроосмотического переноса жидкости через капилляр; (б) — внутренняя поверхность капилляра). Поверхности коллоидной частицы и капилляра заряжены отрицательно.
- 319 -
Это приводит к закономерному динамическому распределению противоионов подобно облаку, плотность которого убывает по мере удаления от заряженной поверхности. Внешняя граница этого облака противоиоиов определяет толщину двойного электрического слоя (рис. 100).
При относительном перемещении фаз, из-за гидратации твердой поверхности и ионов граница скольжения проходит на некотором расстоянии от твердой поверхности. В результате этого двойной электрический слой подразделяется на плотную (адсорбционную) и диффузную части (рис. 100).
Адсорбционная (плотная) часть двойного электрического слоя состоит из потенциалопределяющих ионов и части противоионов. Диффузная часть двойного электрического слоя образована остальными противоионами. Скорость перемещения фаз в электрическом поле определяется величиной потенциала на поверхности скольжения, который поэтому назван электроникетическим потенциалом и кратко обозначается как ζ -потенциал (дзета-потенциал). Этому потенциалу приписывают знак заряда твердой поверхности.
В постоянном внешнем электрическом поле коллоидная частица перемещается к электроду, знак заряда которого противоположен знаку заряда поверхности коллоидной частицы (рис. 101, а). Электроосмотический перенос жидкости направлен к электроду, имеющему тот же знак, что и поверхность капилляра К (рис. 101,б). В этом случае в электрическом поле подвижны гидратированные противоионы, которые увлекают прилегающие к ним слои воды.
Изменение структуры двойного электрического слоя возможно в нескольких направлениях. При очень малых концентрациях электролитов, по мере заполнения активных центров поверхности потенциалопределяющими ионами, будет происходить увеличение ε-потенциала. Противоионы с высокой адсорбционной способностью (например, многозарядные ионы) могут проникнуть в адсорбционный слой в количествах, сверхэквивалентных первоначальным потенциалопределяющим ионам, вызывая изменение знака заряда поверхности с соответствующей перестройкой всего двойного электрического слоя (перезарядка коллоидов).
Диффузная часть двойного электрического слоя наиболее лабильна и изменчива. Противоионы обмениваются на другие ионы того же знака.
- 320 -
Повышение концентрации раствора приводит к «вытеснению» противоионов из диффузной в плотную часть двойного электрического слоя. Толщина двойного электрического слоя и величина ζ-потенциала уменьшаются. При некоторой концентрации раствора (примерно 0.1 н.) все противоионы оказываются вытесненными в адсорбционный слой и ζ-потенциал становится равным нулю. В этом случае изменение межфазового потенциала от его максимального значения на поверхности твердой фазы до нулевого целиком происходит в пределах адсорбционного слоя. Такое состояние коллоидной мицеллы называют изоэлектрическим состоянием.
Из сказанного следует, что электрокинетические явления проявляются в разбавленных растворах электролитов (<0,1 н.). Электрокинетический потенциал имеет порядок 0,001-0,1 В. Несмотря на небольшую величину, ζ-потенциал играет существенную роль в устойчивости коллоиднодисперсных систем (см. § 113).
Электрокинетические явления находят практическое применение. Так, с помощью электрофореза проводят формование различных изделий из тонких взвесей с последующим их спеканием. Метод электрофореза широко применяют для разделения, выделения и исследования биоколлоидов, особенно белков. Простой его вариант, называемый электрофорезом на бумаге, состоит в том, что нанесенное на полоску бумаги пятно исследуемой смеси белков разделяется на компоненты по величине их заряда, а следовательно, и скорости движения в поле постоянного электрического тока. Этим методом исследуют качественный и количественный состав белков крови и других биологических жидкостей.
Путем электроосмоса удаляют влагу из капиллярнопористых систем и понижают уровень грунтовых вод при возведении гидротехнических и других сооружений.