Нормальная физиология - Агаджанян Николай Александрович
Шрифт:
Интервал:
Закладка:
Превращение и использование энергии
В процессе обмена веществ постоянно происходит превращение энергии: энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Человек и животные получают энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, белков и углеводов. Все процессы жизнедеятельности обеспечиваются энергией за счет анаэробного и аэробного метаболизма. Получение энергии без участия кислорода, например, гликолиз, (расщепление глюкозы до молочной кислоты) называется анаэробным обменом. В ходе анаэробного расщепления глюкозы (гликолиза) или ее резервного субстрата гликогена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Энергии, образующейся в ходе анаэробных процессов, недостаточно для осуществления активной жизни, реакции, происходящие с участием кислорода, энергетически более эффективны. Все процессы, генерирующие энергию с участием кислорода, называются аэробным обменом. При окислении сложных молекул химические связи разрываются, сначала органические молекулы распадаются до трехуглеродных соединений, которые включаются в цикл Кребса (цикл лимонной кислоты), а далее окисляются до СО2 и Н2О. Высвободившиеся в этих реакциях протоны и электроны вступают в цепь переноса электронов, в которой кислород служит конечным акцептором электронов. Биологическое окисление в сущности представляет собой «сгорание» вещества при низкой температуре, часть энергии, высвобождающейся при окислении, запасается в высокоэнергетических фосфатных связях аденозинтрифосфата (АТФ). АТФ является аккумулятором химической энергии и средством ее переноса, диффундируя в те места, где она требуется. Общее количество молекул АТФ, образующихся при полном окислении 1 моля глюкозы до СО2 и Н2О, составляет 25,5 молей. При полном окислении молекулы жиров образуется большее количество молей АТФ, чем при окислении молекулы углеводов.
Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма.
Единица измерения энергии, обычно применяемая в биологии и медицине, – калория (кал). Она определяется как количество энергии, необходимое для повышения температуры 1 г воды на ГС. В Международной системе единиц (СИ) при измерении энергетических величин используется джоуль (1 ккал = 4,19 кДж).
Энергетический эквивалент пищи
Количество энергии, выделяемой при окислении какого-либо соединения, не зависит от числа промежуточных этапов его распада, т. е. от того, сгорело ли оно или окислилось в ходе катаболических процессов. Запас энергии в пище определяется в калориметрической бомбе – замкнутой камере, погруженной в водяную баню. Точно взвешенную пробу помещают в эту камеру, наполненную чистым О2, и поджигают. Количество выделившейся энергии определяется по изменению температуры воды, окружающей камеру.
При окислении углеводов выделяется 17,17 кДж/г (4,1 ккал/г), окисление 1 г жира дает 38,96 кДж (9,3 ккал). Запасание энергии в форме жира является наиболее экономичным способом длительного хранения энергии в организме. Белки окисляются в организме не полностью. Аминогруппы отщепляются от молекулы белка и выводятся с мочой в форме мочевины. Поэтому при сжигании белка в калориметрической бомбе выделяется больше энергии, чем при его окислении в организме: при сжигании белка в калориметрической бомбе выделяется 22,61 кДж/г (5,4 ккал/г), а при окислении в организме – 17,17 кДж/г (4,1 ккал/г). Разница приходится на ту энергию, которая выделяется при сжигании мочевины.
Определение уровня метаболизма
Почти половина всей энергии, получаемой в результате катаболизма, теряется в виде тепла в процессе образования молекул АТФ. Мышечное сокращение – процесс еще менее эффективный. Около 80% энергии, используемой при мышечном сокращении, теряется в виде тепла и только 20% превращается в механическую работу (сокращение мышцы). Если человек не совершает работу, то практически вся генерируемая им энергия теряется в форме тепла (например, у человека, лежащего в постели). Следовательно, величина теплопродукции является точным выражением величины обмена в организме человека.
Для определения количества затрачиваемой организмом энергии применяют прямую и непрямую калориметрию. Первые прямые измерения энергетического обмена провели в 1788 г. Лавуазье и Лаплас.
Прямая калориметрия заключается в непосредственном измерении тепла, выделяемого организмом. Для этого животное или человек помещается в специальную герметическую камеру, по трубам, проходящим через нее, протекает вода. Для вычисления теплопродукции используются данные о теплоемкости жидкости, ее объеме, протекающем через камеру за единицу времени, и разности температур поступающей в камеру и вытекающей жидкости.
Непрямая калориметрия основана на том, что источником энергии в организме являются окислительные процессы, при которых потребляется кислород и выделяется углекислый газ. Поэтому энергетический обмен можно оценивать, исследуя газообмен. Наиболее распространен способ Дугласа – Холдейна, при котором в течение 10- 15 мин собирают выдыхаемый обследуемым человеком воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем определяют объем выдохнутого воздуха и процентное содержание в нем О2 и СО2. По соотношению между количеством выделенного углекислого газа и количеством потребленного за данный период времени кислорода – дыхательному коэффициенту (ДК) – можно установить, какие вещества окисляются в организме. ДК при окислении белков равен 0,8, при окислении жиров – 0,7, а углеводов – 1,0. Каждому значению ДК соответствует определенный калорический эквивалент кислорода, т. е. то количество тепла, которое выделяется при окислении какого-либо вещества на каждый литр поглощенного при этом кислорода. Количество энергии на единицу потребляемого О2 зависит от типа окисляющихся в организме веществ. Калорический эквивалент кислорода при окислении углеводов равен 21 кДж на 1 л О2 (5 ккал/л), белков – 18,7 кДж (4,5 ккал), жиров – 19,8 кДж (4,74 ккал).
Для косвенного определения интенсивности обмена могут быть использованы некоторые физиологические параметры, связанные с потреблением кислорода: частота дыханий и вентиляционный объем, частота сокращений сердца и минутный объем кровотока – все они отражают затраты энергии. Однако эти показатели недостаточно точны.
Основной обмен
Интенсивность энергетического обмена значительно варьирует и зависит от многих факторов. Поэтому для сравнения энергетических затрат у разных людей была введена условная стандартная величина – основной обмен.
Основной обмен (ОО) – это минимальные для бодрствующего организма затраты энергии, определенные в строго контролируемых стандартных условиях:
1. при комфортной температуре (18 – 20 градусов тепла);
2. в положении лежа (но обследуемый не должен спать);
3. в состоянии эмоционального покоя, так как стресс усиливает метаболизм;
4. натощак, т. е. через 12 – 16 ч после последнего приема пищи.
Основной обмен зависит от пола, возраста, роста и массы тела человека. Величина основного обмена в среднем составляет 1 ккал в 1 ч на 1 кг массы тела. У мужчин в сутки основной обмен приблизительно равен 1700 ккал, у женщин основной обмен на 1 кг массы тела примерно на 10% меньше, чем у мужчин, у детей он больше, чем у взрослых, и с увеличением возраста постепенно снижается.