Большая Советская Энциклопедия (ЭК) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Наиболее эффективна непрерывная Э., осуществляемая в многоступенчатых аппаратах (экстракторах) при противотоке исходного раствора и экстрагента. В этом случае заданная степень Э. достигается при наименьшем расходе экстрагента. Многоступенчатые экстракторы (см. рис. 3 , а, б, в) обычно представляют собой вертикальные колонны, разделённые поперечными перфорированными тарелками, вращающимися дисками, мешалками и т. п. на ступени (секции). В каждой ступени происходит перемешивание взаимодействующих фаз и их расслаивание. Т. о., исходный раствор и экстрагент многократно перемешиваются и расслаиваются. Эффективность этих аппаратов оценивается кпд отдельных ступеней или высотой аппарата, эквивалентной одной ступени равновесия — теоретической тарелке (см. Ректификация ).
Значит, распространение получили экстракторы ситчатые и с механическим перемешиванием. В ситчатых (рис. 3 , а) ступени разграничены перфорированными горизонтальными тарелками и сообщаются между собой переливными трубками. Одна из контактирующих жидкостей, проходя через отверстия тарелок, диспергируется, чем создаётся большая поверхность контакта с встречной жидкостью, протекающей по переливным трубкам в виде сплошной фазы. Экстракторы с механическим перемешиванием делятся на роторно-дисковые (рис. 3 , б) и с чередующимися смесительными и отстойными насадочными секциями (рис. 3 , в). В роторно-дисковых экстракторах вращающиеся диски перемешивают и диспергируют жидкости, после чего они расслаиваются. В экстракторах со смесительными и насадочными секциями лопастные или турбинные мешалки размещены на общем вертикальном валу попеременно со слоями неподвижной насадки (кольца Рашига, спирали, пакеты сеток и пр.). Перемешанные жидкости, пройдя через слои насадки, расслаиваются. Применяются также экстракторы с непрерывным контактом взаимодействующих фаз (распылительные, насадочные), не разделённые на отд. ступени, их эффективность при достаточной высоте измеряется несколькими ступенями. Распылительные экстракторы (рис. 3 , г) снабжены соплами, инжекторами и т. п. для диспергирования взаимодействующих жидкостей. Такие аппараты отличаются простотой и высокой производительностью, но сравнительно невысокой эффективностью. Несколько более эффективны, но менее производительны насадочные экстракторы (рис. 3 , д), наполненные кольцами Рашига, кольцами Паля и др. Часто используются ящичные экстракторы, которые разделены вертикальными перегородками на ступени, каждая из которых состоит из смесительной и отстойной камер (рис. 4 ). Расположенные в смесительной камере турбинные мешалки перемешивают жидкости и одновременно транспортируют их из ступени в ступень.
Такие экстракторы могут работать при любом соотношении исходного раствора и экстрагента, сохраняя при этом рабочие концентрации жидкостей при прекращении процесса.
Для Э. неустойчивых соединений (например, антибиотиков) используются центробежные экстракторы, ротор которых состоит из набора цилиндров, перфорированных с обоих концов, или спиральных лент. Исходный раствор и экстрагент движутся навстречу друг другу, причём более тяжёлая жидкость — от центра к периферии, а более лёгкая — в обратном направлении. Контакт жидкостей происходит на пути их движения, а диспергирование — при прохождении через перфорированные части цилиндров.
Э. из твёрдых веществ изображается диаграммой фазового равновесия, показанной на рис. 1, а . В этом случае в зависимости от конструкции используемого аппарата экстрагент проходит либо через слой неподвижной твёрдой фазы, либо перемешивается с нею, либо движется в противотоке к твёрдой фазе, перемещаемой различными транспортными устройствами. Применяется, например, непрерывный противоточный экстрактор (рис. 5 ), где твёрдая фаза перемещается перфорированными шнеками вдоль U -образного цилиндрического корпуса навстречу экстрагенту. Экстракт отводится через процеживатель — цилиндрический лист с вертикальными прорезями.
Э. широко применяется в химической, нефтеперерабатывающей, металлургической, фармацевтической, пищевой и др. отраслях промышленности, например для извлечения ароматических углеводородов из нефтепродуктов, масляных фракций из сернистых нефтей, фенола из сточных вод, антибиотиков из культуральных жидкостей, металлов (в т. ч. редких) или их соединений из руд, многих природных органических соединений из растительного сырья (сахара из свёклы и тростника, масла из соевых бобов и масличных семян, таннина из древесной коры, фармацевтических препаратов из корней и листьев растений и т. п.).
Н. И. Гельперин, В. Л. Пебалк.
Э. в аналитической химии и радиохимии. Для химического анализа элементов, а также при разделении, концентрировании и очистке радиоактивных изотопов наибольшее применение нашла Э. из водных растворов. Экстрагентами при этом служат спирты, кетоны, простые и сложные эфиры, амины, эфиры фосфорной кислоты, хелатообразующие соединения и др. Экстрагенты используют в смесях с разбавителями — жидкостями, которые служат для улучшения физеских (вязкость, плотность) или экстракционных свойств экстрагентов. Разбавителями могут быть керосин, бензол, хлороформ и т. п.
Основные направления Э. в аналитической химии следующие: 1) избирательное извлечение целевых элементов из смесей для количеств, анализа; 2) определение содержания примесей в исследуемых веществах, что особенно важно в технике получения особо чистых веществ. Достоинствами Э. в аналитической химии являются: высокая избирательность, простота осуществления, универсальность (т. е. возможность выделения практически любого элемента). В радиохимии Э. используется главным образом для очистки различных радиоактивных веществ от примесей; извлечения и разделения радиоактивных изотопов из облученных мишеней; выделения естественных радиоактивных изотопов из различных объектов и т. д.
Достоинством Э. при работе с короткоживущими радиоактивными изотопами является также экспрессность. В таких процессах экстрагенты должны обладать радиационной устойчивостью. Для обеспечения безопасности человека при Э. радиоактивных веществ применяют дистанционное управление.
Во многих случаях использование Э. в аналитической химии и радиохимии сочетают с другими методами (хроматографией , соосаждением, дистилляцией и т. д.).
С. С. Бердоносов .
Лит.: Пратт Г. Р. К., Экстракция жидкость — жидкость в теории и практике, в сборнике: Жидкостная экстракция, М., 1958; Фомин В. В., Химия экстракционных процессов, М., 1960; Моррисон Дж., Фрейзер Г., Экстракция в аналитической химии, пер. с англ., Л., 1960; Экстракция в аналитической химии и радиохимии. [Сб. ст.]. под ред. Ю. А. Золотова, М., 1961; Шкоропад Д. Е., Лысковцов И. В., Центробежные жидкостные экстракторы, М., 1962; Зюлковский 3., Жидкостная экстракция в химической промышленности, пер. с польск., Л., 1963; Трейбал P., Жидкостная экстракция, пер. с англ., М., 1966; Броунштейн Б. И., Железняк А. С., Физико-химические основы жидкостной экстракции, М.— Л., 1966; 3олотов Ю. А., Кузьмин Н. М., Экстрактционное концентрирование, М., 1971; Химия процессов экстракции, М., 1972; Аксельруд Г. А., Лысянский В. М., Экстрагирование, Л., 1974.
Рис. 4. Ящичный экстрактор: 1 — камера смешения; 2 — жалюзийная перегородка; 3 — отстойная камера; 4 — граница раздела фаз; 5, 6 — регулирующие трубки; 7 — рециркуляционная трубка; 8 — всасывающий коллектор; 9 — турбинная мешалка.
Рис. 5. Непрерывный противоточный экстрактор: 1 — корпус; 2 — перфорированные шнеки; 3 — ввод твердой фазы; 4 — отвод твердой фазы; 5 — ввод экстрагента; 6 — отвод экстрагента; 7 — процеживатель.
Рис. 1: а — диаграмма равновесия для систем, в которых экстрагент и растворитель исходного раствора взаимно нерастворимы; б — схема однократной экстракции при встречном движении исходного раствора и экстрагента; в — диаграмма равновесия для систем, в которых экстрагент и растворитель исходного раствора частично растворимы.
Рис. 2. Схема установки непрерывного действия для экстракции двумя растворителями: 1 - колонна; II - установка для регенерации экстрагента SB2, III- установка для регенерации экстрагента SB1, IV- дополнительные смесители (в случае работы с флегмой); 1,2,3, ..., n-1, n-номера ступеней: L - исходный раствор; N - сырой экстракт; Rn - сырой рафинат; B1, B2 - экстрагируемые компоненты.
Рис. 3. Схемы экстракционных колонн: а — колонна с ситчатыми тарелками; б — роторно-дисковый экстрактор; в — колонна с чередующимися смесительными и отстойными насадочными секциями; г — распылительная колонна; д — насадочная колонна; 1 — колонна; 2, 6 — распылители; 3 — ситчатая тарелка; 4 — переливные трубки; 5, 12 — насадки; 7, 10 — валы; 8 — плоский ротор; 9 — кольцевые перегородки; 11 — мешалки;